cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158491 a(n) = 20*n^2 - 1.

Original entry on oeis.org

19, 79, 179, 319, 499, 719, 979, 1279, 1619, 1999, 2419, 2879, 3379, 3919, 4499, 5119, 5779, 6479, 7219, 7999, 8819, 9679, 10579, 11519, 12499, 13519, 14579, 15679, 16819, 17999, 19219, 20479, 21779, 23119, 24499, 25919, 27379, 28879, 30419, 31999, 33619, 35279
Offset: 1

Views

Author

Vincenzo Librandi, Mar 20 2009

Keywords

Comments

The identity (20*n^2 - 1)^2 - (100*n^2 - 10)*(2*n)^2 = 1 can be written as a(n)^2 - A158490(n)*A005843(n)^2 = 1.
Sequence found by reading the line from 19, in the direction 19, 79, ... in the square spiral whose vertices are the generalized dodecagonal numbers A195162. - Omar E. Pol, Nov 05 2012

Crossrefs

Programs

  • Magma
    I:=[19, 79, 179]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]];
    
  • Mathematica
    LinearRecurrence[{3,-3,1},{19,79,179},50]
    20*Range[40]^2-1 (* Harvey P. Dale, Aug 24 2021 *)
  • PARI
    a(n)=20*n^2-1 \\ Charles R Greathouse IV, Dec 23 2011

Formula

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f: x*(-19-22*x+x^2)/(x-1)^3.
From Amiram Eldar, Mar 06 2023: (Start)
Sum_{n>=1} 1/a(n) = (1 - cot(Pi/(2*sqrt(5)))*Pi/(2*sqrt(5)))/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = (cosec(Pi/(2*sqrt(5)))*Pi/(2*sqrt(5)) - 1)/2. (End)
From Elmo R. Oliveira, Jan 25 2025: (Start)
E.g.f.: exp(x)*(20*x^2 + 20*x - 1) + 1.
a(n) = A134538(2*n). (End)