A158494 Boundary area of the T-square fractal.
4, 24, 80, 248, 768, 2360, 7200, 21848, 66048, 199160, 599520, 1802648, 5416128, 16264760, 48827040, 146546648, 439771008, 1319575160, 3959249760, 11878797848, 35638490688, 106919666360, 320767387680, 962318940248, 2886990375168, 8661038234360
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Wikipedia, T-square (fractal)
- Good math, bad math, Geometric L-systems
- Index entries for linear recurrences with constant coefficients, signature (6,-11,6).
Crossrefs
Cf. A000392.
Programs
-
Mathematica
CoefficientList[Series[4*(1 - 5*x^2 + 2*x^3 + 4*x^4)/((1 - x)*(1 - 2*x)*(1 - 3*x)), {x, 0, 30}], x] (* Wesley Ivan Hurt, Jan 20 2017 *)
-
PARI
a(n)=4*((n==1)+(n==2)*6+(n>=3)*(1-2^(n-1)+23*3^(n-3))) \\ Jaume Oliver Lafont, Mar 22 2009
-
PARI
Vec(4*x*(1-5*x^2+2*x^3+4*x^4) / ((1-x)*(1-2*x)*(1-3*x)) + O(x^30)) \\ Colin Barker, May 22 2017
Formula
a(1)=4, a(2)=24, a(3)=80; for n>3, a(n) = 3*a(n-1) + 2^n - 8.
G.f.: 4*x*(1 - 5*x^2 + 2*x^3 + 4*x^4) / ((1 - x)*(1 - 2*x)*(1 - 3*x)). - Jaume Oliver Lafont, Mar 21 2009
From Colin Barker, May 22 2017: (Start)
a(n) = 4 - 2^(n+1) + 92*3^(n-3) for n>2.
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) for n>5. (End)
Extensions
Edited by Charles R Greathouse IV, Oct 28 2009
Comments