cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158494 Boundary area of the T-square fractal.

Original entry on oeis.org

4, 24, 80, 248, 768, 2360, 7200, 21848, 66048, 199160, 599520, 1802648, 5416128, 16264760, 48827040, 146546648, 439771008, 1319575160, 3959249760, 11878797848, 35638490688, 106919666360, 320767387680, 962318940248, 2886990375168, 8661038234360
Offset: 1

Views

Author

Andrew V. Sutherland, Mar 20 2009

Keywords

Comments

Consider the n-th iteration of the T-square fractal (as defined in the links) drawn on an integer lattice scaled so that the shortest edge on the boundary of the fractal has unit length a(n)gives the number of lattice squares in the unshaded region that are adjacent to a square in the shaded region. For n=1 there is a single shaded square and a(1) counts the 4 adjacent unshaded squares. Proposed by Simone Severini.

Crossrefs

Cf. A000392.

Programs

  • Mathematica
    CoefficientList[Series[4*(1 - 5*x^2 + 2*x^3 + 4*x^4)/((1 - x)*(1 - 2*x)*(1 - 3*x)), {x, 0, 30}], x] (* Wesley Ivan Hurt, Jan 20 2017 *)
  • PARI
    a(n)=4*((n==1)+(n==2)*6+(n>=3)*(1-2^(n-1)+23*3^(n-3))) \\ Jaume Oliver Lafont, Mar 22 2009
    
  • PARI
    Vec(4*x*(1-5*x^2+2*x^3+4*x^4) / ((1-x)*(1-2*x)*(1-3*x)) + O(x^30)) \\ Colin Barker, May 22 2017

Formula

a(1)=4, a(2)=24, a(3)=80; for n>3, a(n) = 3*a(n-1) + 2^n - 8.
G.f.: 4*x*(1 - 5*x^2 + 2*x^3 + 4*x^4) / ((1 - x)*(1 - 2*x)*(1 - 3*x)). - Jaume Oliver Lafont, Mar 21 2009
From Colin Barker, May 22 2017: (Start)
a(n) = 4 - 2^(n+1) + 92*3^(n-3) for n>2.
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) for n>5. (End)

Extensions

Edited by Charles R Greathouse IV, Oct 28 2009