A158497 Triangle T(n,k) formed by the coordination sequences and the number of leaves for trees.
1, 1, 1, 1, 2, 2, 1, 3, 6, 12, 1, 4, 12, 36, 108, 1, 5, 20, 80, 320, 1280, 1, 6, 30, 150, 750, 3750, 18750, 1, 7, 42, 252, 1512, 9072, 54432, 326592, 1, 8, 56, 392, 2744, 19208, 134456, 941192, 6588344, 1, 9, 72, 576, 4608, 36864, 294912, 2359296, 18874368, 150994944, 1, 10, 90, 810, 7290, 65610, 590490, 5314410, 47829690, 430467210, 3874204890
Offset: 0
Examples
Array, A(n, k) = n*(n-1)^(k-1) for n > 1, A(n, k) = 1 otherwise, begins as: 1, 1, 1, 1, 1, 1, 1, 1, 1, ... A000012; 1, 1, 1, 1, 1, 1, 1, 1, 1, ... A000012; 1, 2, 2, 2, 2, 2, 2, 2, 2, ... A040000; 1, 3, 6, 12, 24, 48, 96, 192, 384, ... A003945; 1, 4, 12, 36, 108, 324, 972, 2916, 8748, ... A003946; 1, 5, 20, 80, 320, 1280, 5120, 20480, 81920, ... A003947; 1, 6, 30, 150, 750, 3750, 18750, 93750, 468750, ... A003948; 1, 7, 42, 252, 1512, 9072, 54432, 326592, 1959552, ... A003949; 1, 8, 56, 392, 2744, 19208, 134456, 941192, 6588344, ... A003950; 1, 9, 72, 576, 4608, 36864, 294912, 2359296, 18874368, ... A003951; 1, 10, 90, 810, 7290, 65610, 590490, 5314410, 47829690, ... A003952; 1, 11, 110, 1100, 11000, 110000, 1100000, 11000000, ............. A003953; 1, 12, 132, 1452, 15972, 175692, 1932612, 21258732, ............. A003954; 1, 13, 156, 1872, 22464, 269568, 3234816, 38817792, ............. A170732; ... ; The triangle begins as: 1 1, 1; 1, 2, 2; 1, 3, 6, 12; 1, 4, 12, 36, 108; 1, 5, 20, 80, 320, 1280; 1, 6, 30, 150, 750, 3750, 18750; 1, 7, 42, 252, 1512, 9072, 54432, 326592; 1, 8, 56, 392, 2744, 19208, 134456, 941192, 6588344; ...; T(3,3) = 12 counts the triples (1,2,1), (1,2,3), (1,3,1), (1,3,2), (2,1,2), (2,1,3), (2,3,1), (2,3,2), (3,1,2), (3,1,3), (3,2,1), (3,2,3) out of a total of 3^3 = 27 triples in the CP(3,3).
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Magma
A158497:= func< n,k | k le 1 select n^k else n*(n-1)^(k-1) >; [A158497(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 18 2025
-
Mathematica
A158497[n_, k_]:= If[n<2 || k==0, 1, n*(n-1)^(k-1)]; Table[A158497[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 18 2025 *)
-
SageMath
def A158497(n,k): return n^k if k<2 else n*(n-1)^(k-1) print(flatten([[A158497(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Mar 18 2025
Formula
T(n, k) = (n-1)^(k-1) + (n-1)^k = n*A079901(n-1,k-1), k > 0.
Sum_{k=0..n} T(n,k) = (n*(n-1)^n - 2)/(n-2), n > 2.
Extensions
Edited by R. J. Mathar, Mar 31 2009
More terms added by G. C. Greubel, Mar 18 2025
Comments