cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158560 a(n) = 30*n^2 - 1.

Original entry on oeis.org

29, 119, 269, 479, 749, 1079, 1469, 1919, 2429, 2999, 3629, 4319, 5069, 5879, 6749, 7679, 8669, 9719, 10829, 11999, 13229, 14519, 15869, 17279, 18749, 20279, 21869, 23519, 25229, 26999, 28829, 30719, 32669, 34679, 36749, 38879, 41069, 43319, 45629, 47999, 50429
Offset: 1

Views

Author

Vincenzo Librandi, Mar 21 2009

Keywords

Comments

The identity (30*n^2-1)^2 - (225*n^2-15) * (2*n)^2 = 1 can be written as a(n)^2 - A158559(n) * A005843(n)^2 = 1.

Crossrefs

Programs

  • Magma
    I:=[29, 119, 269]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Feb 14 2012
    
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {29, 119, 269}, 50] (* Vincenzo Librandi, Feb 14 2012 *)
    30*Range[50]^2-1 (* Harvey P. Dale, May 30 2018 *)
  • PARI
    for(n=1, 40, print1(30*n^2-1", ")); \\ Vincenzo Librandi, Feb 14 2012

Formula

G.f.: x*(-29 - 32*x + x^2)/(x - 1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
From Amiram Eldar, Mar 09 2023: (Start)
Sum_{n>=1} 1/a(n) = (1 - cot(Pi/sqrt(30))*Pi/sqrt(30))/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = (cosec(Pi/sqrt(30))*Pi/sqrt(30) - 1)/2. (End)

Extensions

Comment rewritten by R. J. Mathar, Oct 16 2009