cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158575 a(n) = 32*n^2 + 1.

Original entry on oeis.org

1, 33, 129, 289, 513, 801, 1153, 1569, 2049, 2593, 3201, 3873, 4609, 5409, 6273, 7201, 8193, 9249, 10369, 11553, 12801, 14113, 15489, 16929, 18433, 20001, 21633, 23329, 25089, 26913, 28801, 30753, 32769, 34849, 36993, 39201, 41473, 43809, 46209, 48673, 51201, 53793
Offset: 0

Views

Author

Vincenzo Librandi, Mar 21 2009

Keywords

Comments

The identity (32*n^2 + 1)^2 - (256*n^2 + 16)*(2*n)^2 = 1 can be written as a(n)^2-A158574(n)*A005843(n)^2 = 1. - Comment rewritten by R. J. Mathar, Oct 16 2009
Sequence found by reading the line segment from 1 to 33 together with the line from 33, in the direction 33, 129, ..., in the square spiral whose vertices are the generalized 18-gonal numbers A274979. - Omar E. Pol, Apr 21 2021

Crossrefs

Cf. A274979 (generalized 18-gonal numbers).

Programs

  • Magma
    I:=[1, 33, 129]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Feb 15 2012
    
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {1, 33, 129}, 50] (* Vincenzo Librandi, Feb 15 2012 *)
    32*Range[0,40]^2+1 (* Harvey P. Dale, Jul 20 2021 *)
  • PARI
    for(n=0, 50, print1(32*n^2+1", ")); \\ Vincenzo Librandi, Feb 15 2012

Formula

G.f.: (1+30*x+33*x^2)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
For n > 0 a(n) = sqrt(8*(A000217(4*n-1)^2 + A000217(4*n)^2) + 1). - J. M. Bergot, Sep 03 2015
a(n) = A244082(n) + 1. - Omar E. Pol, Apr 21 2021
From Amiram Eldar, Mar 09 2023: (Start)
Sum_{n>=0} 1/a(n) = (1 + coth(Pi/(4*sqrt(2)))*Pi/(4*sqrt(2)))/2.
Sum_{n>=0} (-1)^n/a(n) = (1 + cosech(Pi/(4*sqrt(2)))*Pi/(4*sqrt(2)))/2. (End)
From Elmo R. Oliveira, Jan 16 2025: (Start)
E.g.f.: exp(x)*(1 + 32*x + 32*x^2).
a(n) = A081585(2*n). (End)

Extensions

a(0) added by R. J. Mathar, Oct 16 2009