A158575 a(n) = 32*n^2 + 1.
1, 33, 129, 289, 513, 801, 1153, 1569, 2049, 2593, 3201, 3873, 4609, 5409, 6273, 7201, 8193, 9249, 10369, 11553, 12801, 14113, 15489, 16929, 18433, 20001, 21633, 23329, 25089, 26913, 28801, 30753, 32769, 34849, 36993, 39201, 41473, 43809, 46209, 48673, 51201, 53793
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Vincenzo Librandi, X^2-AY^2=1, Math Forum, 2007. [Wayback Machine link]
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
I:=[1, 33, 129]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Feb 15 2012
-
Mathematica
LinearRecurrence[{3, -3, 1}, {1, 33, 129}, 50] (* Vincenzo Librandi, Feb 15 2012 *) 32*Range[0,40]^2+1 (* Harvey P. Dale, Jul 20 2021 *)
-
PARI
for(n=0, 50, print1(32*n^2+1", ")); \\ Vincenzo Librandi, Feb 15 2012
Formula
G.f.: (1+30*x+33*x^2)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = A244082(n) + 1. - Omar E. Pol, Apr 21 2021
From Amiram Eldar, Mar 09 2023: (Start)
Sum_{n>=0} 1/a(n) = (1 + coth(Pi/(4*sqrt(2)))*Pi/(4*sqrt(2)))/2.
Sum_{n>=0} (-1)^n/a(n) = (1 + cosech(Pi/(4*sqrt(2)))*Pi/(4*sqrt(2)))/2. (End)
From Elmo R. Oliveira, Jan 16 2025: (Start)
E.g.f.: exp(x)*(1 + 32*x + 32*x^2).
a(n) = A081585(2*n). (End)
Extensions
a(0) added by R. J. Mathar, Oct 16 2009
Comments