A158597 a(n) = 400*n^2 - 20.
380, 1580, 3580, 6380, 9980, 14380, 19580, 25580, 32380, 39980, 48380, 57580, 67580, 78380, 89980, 102380, 115580, 129580, 144380, 159980, 176380, 193580, 211580, 230380, 249980, 270380, 291580, 313580, 336380, 359980, 384380, 409580, 435580, 462380, 489980, 518380
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Vincenzo Librandi, X^2-AY^2=1, Math Forum, 2007. [Wayback Machine link]
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
I:=[380, 1580, 3580]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 16 2012
-
Mathematica
LinearRecurrence[{3, -3, 1}, {380, 1580, 3580}, 50] (* Vincenzo Librandi, Feb 16 2012 *) 400*Range[40]^2-20 (* Harvey P. Dale, Nov 04 2015 *)
-
PARI
for(n=1, 40, print1(400*n^2- 20", ")); \\ Vincenzo Librandi, Feb 16 2012
Formula
G.f.: 20*x*(-19 - 22*x + x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
From Amiram Eldar, Mar 14 2023: (Start)
Sum_{n>=1} 1/a(n) = (1 - cot(Pi/(2*sqrt(5)))*Pi/(2*sqrt(5)))/40.
Sum_{n>=1} (-1)^(n+1)/a(n) = (cosec(Pi/(2*sqrt(5)))*Pi/(2*sqrt(5)) - 1)/40. (End)
From Elmo R. Oliveira, Jan 16 2025: (Start)
E.g.f.: 20*(exp(x)*(20*x^2 + 20*x - 1) + 1).
a(n) = 20*A158491(n). (End)
Extensions
Comment rewritten, formula replaced by R. J. Mathar, Oct 28 2009
Comments