cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158620 Partial products of A068601.

Original entry on oeis.org

7, 182, 11466, 1421784, 305683560, 104543777520, 53421870312720, 38891121587660160, 38852230466072499840, 51673466519876424787200, 89240076679826585607494400, 195971208388899181994057702400
Offset: 2

Views

Author

Jonathan Vos Post, Mar 23 2009

Keywords

Comments

A158621(n) = Product_{k=2..n} (k^3+1). A158622(n) is the numerator of the reduced fraction A158620(n)/A158621(n). A158623(n) is the denominator of the reduced fraction A158620(n)/A158621(n).
Also the determinant of the n X n matrix given by m(i,j) = i^3 if i=j and 1 otherwise. For example, Det[{{1,1,1, 1},{1,8,1,1},{1,1,27,1},{1,1,1,64}}] = 11466 = a(4). - John M. Campbell, May 20 2011

Examples

			a(2) = 2^3-1 = 7.
a(3) = (2^3-1)*(3^3-1) = 7 * 26 = 182.
a(4) = (2^3-1)*(3^3-1)*(4^3-1) = 7 * 26 * 63 = 11466.
		

Crossrefs

Programs

  • Mathematica
    Rest[FoldList[Times,1,Range[2,15]^3-1]] (* Harvey P. Dale, Apr 18 2015 *)
  • PARI
    a(n) = prod(k = 2, n, k^3 - 1); \\ Michel Marcus, Sep 29 2013

Formula

Product_{k=2..n} (k^3-1) = Product_{k=2..n} A068601(k).
a(n) ~ 2^(3/2) * sqrt(Pi) * cosh(sqrt(3)*Pi/2) * n^(3*n+3/2) / (3 * exp(3*n)). - Vaclav Kotesovec, Jul 11 2015