cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158621 Partial products of A001093.

Original entry on oeis.org

9, 252, 16380, 2063880, 447861960, 154064514240, 79035095805120, 57695619937737600, 57753315557675337600, 76927416322823549683200, 133007502822161917402252800, 292350491203111894450151654400
Offset: 2

Views

Author

Jonathan Vos Post, Mar 23 2009

Keywords

Comments

A158620(n) = PRODUCT[k=2..n](k^3-1). A158622(n) is the numerator of the reduced fraction A158620(n)/A158621(n). A158623(n) is the denominator of the reduced fraction A158620(n)/A158621(n).

Examples

			a(2) = 2^3+1 = 9. a(3) = (2^3+1)*(3^3+1) = 9 * 28 = 252. a(4) = (2^3+1)*(3^3+1)*(4^3+1) = 9 * 28 * 65 = 16380.
		

Crossrefs

Programs

  • Mathematica
    Table[Product[(k^3+1),{k,2,n}],{n,2,20}] (* Vaclav Kotesovec, Jul 11 2015 *)
    FoldList[Times,Range[2,20]^3+1] (* Harvey P. Dale, Oct 15 2017 *)

Formula

PRODUCT[k=2..n](k^3+1) = PRODUCT[k=2..n]A001093(k).
a(n) ~ sqrt(2*Pi) * cosh(sqrt(3)*Pi/2) * n^(3*n+3/2) / exp(3*n). - Vaclav Kotesovec, Jul 11 2015