cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158638 a(n) = 48*n^2 + 1.

Original entry on oeis.org

1, 49, 193, 433, 769, 1201, 1729, 2353, 3073, 3889, 4801, 5809, 6913, 8113, 9409, 10801, 12289, 13873, 15553, 17329, 19201, 21169, 23233, 25393, 27649, 30001, 32449, 34993, 37633, 40369, 43201, 46129, 49153, 52273, 55489, 58801, 62209, 65713, 69313, 73009, 76801
Offset: 0

Views

Author

Vincenzo Librandi, Mar 23 2009

Keywords

Comments

The identity (48*n^2 + 1)^2 - (576*n^2 + 24)*(2*n)^2 = 1 can be written as a(n)^2 - A158637(n)*A005843(n)^2 = 1.

Crossrefs

Programs

Formula

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: -(1 + 46*x + 49*x^2)/(x-1)^3.
a(n) = 48*A000290(n) + 1. - Wesley Ivan Hurt, Dec 06 2013
From Amiram Eldar, Mar 19 2023: (Start)
Sum_{n>=0} 1/a(n) = (coth(Pi/(4*sqrt(3)))*Pi/(4*sqrt(3)) + 1)/2.
Sum_{n>=0} (-1)^n/a(n) = (cosech(Pi/(4*sqrt(3)))*Pi/(4*sqrt(3)) + 1)/2. (End)
From Elmo R. Oliveira, Jan 17 2025: (Start)
E.g.f.: exp(x)*(1 + 48*x + 48*x^2).
a(n) = A158480(2*n). (End)

Extensions

Comment rephrased and redundant formula replaced by R. J. Mathar, Oct 19 2009