cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158659 a(n) = 784*n^2 + 28.

Original entry on oeis.org

28, 812, 3164, 7084, 12572, 19628, 28252, 38444, 50204, 63532, 78428, 94892, 112924, 132524, 153692, 176428, 200732, 226604, 254044, 283052, 313628, 345772, 379484, 414764, 451612, 490028, 530012, 571564, 614684, 659372, 705628, 753452, 802844, 853804, 906332
Offset: 0

Views

Author

Vincenzo Librandi, Mar 23 2009

Keywords

Comments

The identity (56*n^2 + 1)^2 - (784*n^2 + 28)*(2*n)^2 = 1 can be written as A158660(n)^2 - a(n)*A005843(n)^2 = 1.

Crossrefs

Programs

  • Magma
    I:=[28, 812, 3164]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 17 2012
    
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {28, 812, 3164}, 50] (* Vincenzo Librandi, Feb 17 2012 *)
    784 Range[0,40]^2+28 (* Harvey P. Dale, Nov 01 2024 *)
  • PARI
    for(n=0, 40, print1(784*n^2 + 28", ")); \\ Vincenzo Librandi, Feb 17 2012

Formula

G.f.: -28*(1 + 26*x + 29*x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
From Amiram Eldar, Mar 20 2023: (Start)
Sum_{n>=0} 1/a(n) = (coth(Pi/(2*sqrt(7)))*Pi/(2*sqrt(7)) + 1)/56.
Sum_{n>=0} (-1)^n/a(n) = (cosech(Pi/(2*sqrt(7)))*Pi/(2*sqrt(7)) + 1)/56. (End)
From Elmo R. Oliveira, Jan 15 2025: (Start)
E.g.f.: 28*exp(x)*(1 + 28*x + 28*x^2).
a(n) = 28*A158556(n). (End)

Extensions

Comment rephrased and redundant formula replaced by R. J. Mathar, Oct 19 2009