cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A272126 a(n) = 120*n^3 + 60*n^2 + 2*n + 1.

Original entry on oeis.org

1, 183, 1205, 3787, 8649, 16511, 28093, 44115, 65297, 92359, 126021, 167003, 216025, 273807, 341069, 418531, 506913, 606935, 719317, 844779, 984041, 1137823, 1306845, 1491827, 1693489, 1912551, 2149733, 2405755, 2681337, 2977199, 3294061, 3632643, 3993665
Offset: 0

Views

Author

Vincenzo Librandi, Apr 25 2016

Keywords

Comments

This is the polynomial Qbar(3,n) in Brent. See A160485 for the triangle of coefficients (with signs) of the Qbar polynomials. - Peter Bala, Jan 22 2019

Crossrefs

Programs

  • Magma
    [120*n^3 + 60*n^2 + 2*n + 1: n in [0..50]];
    
  • Mathematica
    Table[120 n^3 + 60 n^2 + 2 n + 1, {n, 0, 40}]
    LinearRecurrence[{4,-6,4,-1},{1,183,1205,3787},40] (* Harvey P. Dale, Nov 08 2020 *)
  • PARI
    a(n) = 120*n^3 + 60*n^2 + 2*n + 1; \\ Altug Alkan, Apr 30 2016

Formula

O.g.f.: (1 + 179*x + 479*x^2 + 61*x^3)/(1-x)^4.
E.g.f.: (1 + 182*x + 420*x^2 + 120*x^3)*exp(x).
a(n) = (2*n+1)*(60*n^2+1).
a(n) = (2*n+1) * A158673(n).
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) for n>3.
See page 7 in Brent's paper:
a(n) = (2*n+1)^2*A014641(n) - 2*n*(2*n+1)*A014641(n-1).
A272127(n) = (2*n+1)^2*a(n) - 2*n*(2*n+1)*a(n-1).
From Peter Bala, Jan 22 2019: (Start)
a(n) = 1/4^n * Sum_{k = 0..n} (2*k + 1)^6 * binomial(2*n + 1, n - k).
a(n-1) = 2/4^n * binomial(2*n,n) * ( 1 + 3^6*(n - 1)/(n + 1) + 5^6*(n - 1)*(n - 2)/((n + 1)*(n + 2)) + 7^6*(n - 1)*(n - 2)*(n - 3)/((n + 1)*(n + 2)*(n + 3)) + ... ). (End)

A158672 a(n) = 900*n^2 + 30.

Original entry on oeis.org

30, 930, 3630, 8130, 14430, 22530, 32430, 44130, 57630, 72930, 90030, 108930, 129630, 152130, 176430, 202530, 230430, 260130, 291630, 324930, 360030, 396930, 435630, 476130, 518430, 562530, 608430, 656130, 705630, 756930, 810030, 864930, 921630, 980130, 1040430
Offset: 0

Views

Author

Vincenzo Librandi, Mar 24 2009

Keywords

Comments

The identity (60*n^2 + 1)^2 - (900*n^2 + 30)*(2*n)^2 = 1 can be written as A158673(n)^2 - a(n)*A005843(n)^2 = 1.

Crossrefs

Programs

  • Magma
    I:=[30, 930, 3630]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 19 2012
    
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {30, 930, 3630}, 50] (* Vincenzo Librandi, Feb 19 2012 *)
    900*Range[0,40]^2+30 (* Harvey P. Dale, May 02 2025 *)
  • PARI
    for(n=0, 40, print1(900*n^2 + 30", ")); \\ Vincenzo Librandi, Feb 19 2012

Formula

G.f.: -30*(1 + 28*x + 31*x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
From Amiram Eldar, Mar 20 2023: (Start)
Sum_{n>=0} 1/a(n) = (coth(Pi/sqrt(30))*Pi/sqrt(30) + 1)/60.
Sum_{n>=0} (-1)^n/a(n) = (cosech(Pi/sqrt(30))*Pi/sqrt(30) + 1)/60. (End)
From Elmo R. Oliveira, Jan 15 2025: (Start)
E.g.f.: 30*exp(x)*(1 + 30*x + 30*x^2).
a(n) = 30*A158558(n). (End)

Extensions

Comment rewritten, a(0) added and formula replaced by R. J. Mathar, Oct 22 2009
Showing 1-2 of 2 results.