cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158684 a(n) = 64*n^2 - 1.

Original entry on oeis.org

63, 255, 575, 1023, 1599, 2303, 3135, 4095, 5183, 6399, 7743, 9215, 10815, 12543, 14399, 16383, 18495, 20735, 23103, 25599, 28223, 30975, 33855, 36863, 39999, 43263, 46655, 50175, 53823, 57599, 61503, 65535, 69695, 73983, 78399, 82943, 87615, 92415, 97343, 102399
Offset: 1

Views

Author

Vincenzo Librandi, Mar 24 2009

Keywords

Comments

The identity (64*n^2 - 1)^2 - (1024*n^2 - 32)*(2*n)^2 = 1 can be written as a(n)^2 - A158683(n)*A005843(n)^2 = 1.

Crossrefs

Programs

  • Magma
    I:=[63, 255, 575]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 20 2012
    
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {63, 255, 575}, 50] (* Vincenzo Librandi, Feb 20 2012 *)
    64*Range[40]^2-1 (* Harvey P. Dale, Jul 09 2017 *)
  • PARI
    for(n=1, 40, print1(64*n^2 - 1", ")); \\ Vincenzo Librandi, Feb 20 2012

Formula

G.f.: x*(-63 - 66*x + x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
From Amiram Eldar, Mar 21 2023: (Start)
Sum_{n>=1} 1/a(n) = (1 - cot(Pi/8)*Pi/8)/2 = (1 - (sqrt(2)+1)*Pi/8)/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = (cosec(Pi/8)*Pi/8 - 1)/2. (End)
E.g.f.: 1 + exp(x)*(64*x^2 + 64*x - 1). - Elmo R. Oliveira, Jan 16 2025

Extensions

Comment rewritten and formula replaced by R. J. Mathar, Oct 22 2009