cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A158683 a(n) = 1024*n^2 - 32.

Original entry on oeis.org

992, 4064, 9184, 16352, 25568, 36832, 50144, 65504, 82912, 102368, 123872, 147424, 173024, 200672, 230368, 262112, 295904, 331744, 369632, 409568, 451552, 495584, 541664, 589792, 639968, 692192, 746464, 802784, 861152, 921568, 984032, 1048544, 1115104, 1183712
Offset: 1

Views

Author

Vincenzo Librandi, Mar 24 2009

Keywords

Comments

The identity (64*n^2 - 1)^2 - (1024*n^2 - 32)*(2*n)^2 = 1 can be written as A158684(n)^2 - a(n)*A005843(n)^2 = 1.

Crossrefs

Programs

  • Magma
    I:=[992, 4064, 9184]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 19 2012
    
  • Maple
    A158683:=n->1024*n^2-32: seq(A158683(n), n=1..50); # Wesley Ivan Hurt, Nov 20 2014
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {992, 4064, 9184}, 50] (* Vincenzo Librandi, Feb 19 2012 *)
  • PARI
    for(n=1, 40, print1(1024*n^2 - 32", ")); \\ Vincenzo Librandi, Feb 19 2012

Formula

G.f.: 32*x*(-31-34*x+x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
From Amiram Eldar, Mar 21 2023: (Start)
Sum_{n>=1} 1/a(n) = (1 - cot(Pi/(4*sqrt(2)))*Pi/(4*sqrt(2)))/64.
Sum_{n>=1} (-1)^(n+1)/a(n) = (cosec(Pi/(4*sqrt(2)))*Pi/(4*sqrt(2)) - 1)/64. (End)
From Elmo R. Oliveira, Jan 16 2025: (Start)
E.g.f.: 32*(exp(x)*(32*x^2 + 32*x - 1) + 1).
a(n) = 32*A158563(n). (End)

Extensions

Comment rewritten and formula replaced by R. J. Mathar, Oct 22 2009

A382907 Decimal expansion of 1/2 - Pi*(sqrt(2)+1)/16.

Original entry on oeis.org

0, 2, 5, 9, 7, 0, 2, 7, 5, 5, 1, 5, 7, 4, 0, 0, 3, 2, 1, 5, 7, 5, 9, 2, 2, 2, 6, 6, 6, 6, 2, 3, 7, 7, 1, 3, 5, 7, 4, 2, 6, 3, 0, 5, 6, 9, 5, 3, 0, 7, 5, 2, 4, 7, 2, 4, 6, 2, 2, 8, 7, 3, 7, 5, 4, 5, 9, 8, 4, 3, 0, 0, 0, 3, 8, 3, 9, 4, 8, 1, 8, 1, 7, 4, 7, 8, 9
Offset: 0

Views

Author

Sean A. Irvine, Apr 08 2025

Keywords

Examples

			0.02597027551574003215759...
		

Crossrefs

Programs

  • Mathematica
    Join[{0},RealDigits[1/2-(Pi(Sqrt[2]+1))/16,10,120][[1]]] (* Harvey P. Dale, Apr 30 2025 *)

Formula

Equals Sum_{k>=1} 1/((8*k-1)*(8*k+1)).
From Amiram Eldar, Aug 08 2025: (Start)
Equals Sum_{k>=1} 1/A158684(k).
Equals (1 - cot(Pi/8)*Pi/8)/2. (End)
Showing 1-2 of 2 results.