A158691 The number of upper-triangular matrices with at least one nonzero entry in each row and whose entries sum to n.
1, 1, 3, 12, 61, 380, 2815, 24213, 237348, 2612681, 31915787, 428481472, 6271362282, 99388642292, 1695614865711, 30984649882928, 603790447393402, 12498732438500663, 273902239550757626, 6334968666307580051, 154211723833861061644, 3941258052200287007636
Offset: 0
Examples
G.f.: A(x) = 1 + x + 3*x^2 + 12*x^3 + 61*x^4 + 380*x^5 + 2815*x^6 +...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..200
- George E. Andrews, Vít Jelínek, On q-Series Identities Related to Interval Orders, arXiv:1309.6669 [math.CO], 2013.
- George E. Andrews, Vít Jelínek, On q-Series Identities Related to Interval Orders, European Journal of Combinatorics, Volume 39, July 2014, 178-187.
- Kathrin Bringmann, Yingkun Li, Robert C. Rhoades, Asymptotics for the number of row-Fishburn matrices, European Journal of Combinatorics, Volume 41, October 2014, Pages 183-196; preprint.
- Hsien-Kuei Hwang, Emma Yu Jin, Asymptotics and statistics on Fishburn matrices and their generalizations, arXiv:1911.06690 [math.CO], 2019.
- Florian Ingels, Romain Azaïs, Enumeration of Unordered Forests, arXiv:2003.08144 [cs.DM], 2020.
- Vít Jelínek, Counting self-dual interval orders, arXiv:1106.2261 [math.CO], 2011.
- Vít Jelínek, Counting general and self-dual interval orders, Journal of Combinatorial Theory, Series A, Volume 119, Issue 3, April 2012, pp. 599-614.
- Sherry H. F. Yan and Yuexiao Xu, Self-dual interval orders and row-Fishburn matrices, arXiv:1111.4723 [math.CO], 2011.
- Sherry H. F. Yan and Yuexiao Xu, Self-dual interval orders and row-Fishburn matrices, Electronic Journal of Combinatorics, 19(2):P5 (2012).
Programs
-
Maple
g:=sum(product(1-(1-x)^(2*i-1), i= 1..n), n = 0..20): gser:=series(g, x = 0,20): seq(coeff(gser, x, n), n = 0..19); # by definition g:=sum((-1)^n*product(1-1/(1-x)^i, i= 1..n), n = 0..20): gser:=series(g, x = 0,20): seq(coeff(gser, x, n), n = 0..19);
-
Mathematica
a[ n_] := SeriesCoefficient[ Sum[ Product[ 1 - (1 - x)^(2 i - 1), {i, k}], {k, 0, n}], {x, 0, n}]; (* Michael Somos, Jun 27 2017 *)
-
PARI
{a(n)=polcoeff(sum(m=0, n, prod(k=1, m, 1/(1-x)^k-1, 1+x*O(x^n))), n)} /* Paul D. Hanna, Jan 29 2012 */
-
PARI
/* G.f. as a Continued Fraction: */ {a(n)=local(CF=1+x*O(x)); for(k=0, n, CF=1/(1 - (1-x)^(n-k+1)*(1-(1-x)^(n-k+2))*CF)); polcoeff(1/(1-x*CF), n, x)} /* Paul D. Hanna, Jan 29 2012 */
Formula
Sum_{n >= 0} Product_{i= 1..n} (1-(1-x)^(2*i-1)) = 1 + x + 3*x^2 + 12*x^3 + 61*x^4 + .... Compare with A022493, A138265 and A158690.
G.f.: Sum_{n>=0} Product_{k=1..n} [1/(1-x)^k - 1].
G.f.: 1/(1 - (1-(1-x))/(1 - (1-x)*(1-(1-x)^2)/(1 - (1-x)^2*(1-(1-x)^3)/(1 - (1-x)^3*(1-(1-x)^4)/(1 - (1-x)^4*(1-(1-x)^5)/(1 -...)))))), a continued fraction. - Paul D. Hanna, Jan 29 2012
By results of Bringmann, Li and Rhoades, a(n) is asymptotically c*n!*(12/Pi^2)^n, with c=6*sqrt(2)*exp(Pi^2/24)/Pi^2, and the ratio a(n)/A179525(n) tends to exp(Pi^2/12). - Vít Jelínek, Sep 04 2014
From Peter Bala, May 16 2017: (Start)
G.f. 1/2*( 1 + Sum_{n >= 0} 1/(1 - x)^((n+1)*(n+2)/2) * Product_{i = 1..n} (1 - (1 - x)^i) ).
Conjectural g.f.: Sum_{n >= 0} 1/(1 - x)^((n+1)*(2*n+1)) * Product_{i = 1..2*n} ((1 - x)^i - 1). (End)
Comments