cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158706 Expansion of e.g.f.: exp(t*x)/(1 - x/t - t^2 * x^2).

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 2, 0, 3, 6, 0, 6, 0, 15, 0, 7, 24, 0, 24, 0, 84, 0, 52, 0, 37, 120, 0, 120, 0, 540, 0, 380, 0, 485, 0, 141, 720, 0, 720, 0, 3960, 0, 3000, 0, 5430, 0, 2406, 0, 1111, 5040, 0, 5040, 0, 32760, 0, 26040, 0, 60690, 0, 32802, 0, 28147, 0, 5923
Offset: 0

Views

Author

Roger L. Bagula, Mar 24 2009

Keywords

Examples

			Irregular triangle begins as:
     1;
     1, 0,    1;
     2, 0,    2, 0,     3;
     6, 0,    6, 0,    15, 0,     7;
    24, 0,   24, 0,    84, 0,    52, 0,    37;
   120, 0,  120, 0,   540, 0,   380, 0,   485, 0,   141;
   720, 0,  720, 0,  3960, 0,  3000, 0,  5430, 0,  2406, 0,  1111;
  5040, 0, 5040, 0, 32760, 0, 26040, 0, 60690, 0, 32802, 0, 28147, 0, 5923;
		

Crossrefs

Cf. A011973, A110313 (row sums).

Programs

  • Mathematica
    (* First program *)
    Table[CoefficientList[n!*t^n*SeriesCoefficient[Series[Exp[t*x]/(1 -x/t -t^2*x^2), {x,0,20}], n], t], {n,0,10}]//Flatten
    (* Second program *)
    Table[CoefficientList[Series[Sum[Sum[GegenbauerC[k, (s+1)/2 -k, 1]*x^(4*k+2*n - 2*s)*(n!/(n-s)!), {k,0,Floor[s/2]}], {s,0,n}], {x,0,20}], x], {n,0,10}] (* G. C. Greubel, Nov 30 2021 *)
  • Sage
    @CachedFunction
    def A011973(n,k): return 0 if (k<0 or k>(n//2)) else binomial(n-k, k)
    def f(n,x): return sum( sum( (A011973(s,j)/factorial(n-s))*x^(4*j+2*n-2*s) for j in (0..(s//2)) ) for s in (0..n) )
    def A158706(n,k): return factorial(n)*( f(n,x) ).series(x,2*n+1).list()[k]
    flatten([[A158706(n,k) for k in (0..2*n)] for n in (0..12)]) # G. C. Greubel, Nov 30 2021

Formula

T(n, k) = coefficients of the expansion : p(x,t) = exp(t*x)/(1 - x/t - t^2* x^2).
T(n, k) = coefficients of the series : Sum_{s=0..n} Sum_{j=0..floor(s/2)} (n!/(n-s)!)*A011973(s, j)*x^(4*j+2*n-2*s). - G. C. Greubel, Nov 30 2021

Extensions

Edited by G. C. Greubel, Nov 30 2021