cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158738 a(n) = 72*n^2 - 1.

Original entry on oeis.org

71, 287, 647, 1151, 1799, 2591, 3527, 4607, 5831, 7199, 8711, 10367, 12167, 14111, 16199, 18431, 20807, 23327, 25991, 28799, 31751, 34847, 38087, 41471, 44999, 48671, 52487, 56447, 60551, 64799, 69191, 73727, 78407, 83231, 88199, 93311, 98567, 103967, 109511, 115199
Offset: 1

Views

Author

Vincenzo Librandi, Mar 25 2009

Keywords

Comments

The identity (72*n^2 - 1)^2 - (1296*n^2 - 36)*(2*n)^2 = 1 can be written as a(n)^2 - A158737(n)*A005843(n)^2 = 1.

Crossrefs

Programs

  • Magma
    I:=[71,287,647]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 21 2012
    
  • Maple
    A158738:=n->72*n^2 - 1; seq(A158738(n), n=1..40); # Wesley Ivan Hurt, Feb 01 2014
  • Mathematica
    72Range[40]^2-1 (* or *) LinearRecurrence[{3,-3,1},{71,287,647},40] (* Harvey P. Dale, May 01 2011 *)
  • PARI
    for(n=1, 40, print1(72*n^2 - 1", ")); \\ Vincenzo Librandi, Feb 21 2012

Formula

G.f.: x*(-71 - 74*x + x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
From Amiram Eldar, Mar 22 2023: (Start)
Sum_{n>=1} 1/a(n) = (1 - cot(Pi/(6*sqrt(2)))*Pi/(6*sqrt(2)))/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = (cosec(Pi/(6*sqrt(2)))*Pi/(6*sqrt(2)) - 1)/2. (End)
From Elmo R. Oliveira, Jan 17 2025: (Start)
E.g.f.: exp(x)*(72*x^2 + 72*x - 1) + 1.
a(n) = A157910(2*n). (End)

Extensions

Comment rewritten and formula replaced by R. J. Mathar, Oct 22 2009