A158777 Irregular array T(n,k), read by rows: row n is the polynomial expansion in t of p(x,t) = exp(t*x)/(1 - x/t - t^4 * x^4) with weighting factors t^n*n!.
1, 1, 0, 1, 2, 0, 2, 0, 1, 6, 0, 6, 0, 3, 0, 1, 24, 0, 24, 0, 12, 0, 4, 0, 25, 120, 0, 120, 0, 60, 0, 20, 0, 245, 0, 121, 720, 0, 720, 0, 360, 0, 120, 0, 2190, 0, 1446, 0, 361, 5040, 0, 5040, 0, 2520, 0, 840, 0, 20370, 0, 15162, 0, 5047, 0, 841, 40320, 0, 40320, 0, 20160, 0, 6720, 0
Offset: 0
Examples
Array T(n,k) (with n >= 0 and 0 <= k <= 2*n) begins as follows: 1; 1, 0, 1; 2, 0, 2, 0, 1; 6, 0, 6, 0, 3, 0, 1; 24, 0, 24, 0, 12, 0, 4, 0, 25; 120, 0, 120, 0, 60, 0, 20, 0, 245, 0, 121; 720, 0, 720, 0, 360, 0, 120, 0, 2190, 0, 1446, 0, 361; 5040, 0, 5040, 0, 2520, 0, 840, 0, 20370, 0, 15162, 0, 5047, 0, 841; ...
Programs
-
Maple
# Triangle T(n, k) without the zeros (even k): W := proc(n, m) local v, s, h; v := 0; for s from 0 to m do if 0 = (m - s) mod 4 then h := (m - s)/4; v := v + binomial(n - s - 3*h, h)/s!; end if; end do; n!*v; end proc; for n1 from 0 to 20 do seq(W(n1,m1), m1=0..n1); end do; # Petros Hadjicostas, Apr 15 2020
-
Mathematica
(* Generates the sequence in the data section *) Table[Expand[t^n*n!*SeriesCoefficient[Series[Exp[t*x]/(1 - x/t - t^4*x^4), {x, 0, 20}], n]], {n, 0, 10}]; a = Table[CoefficientList[Expand[t^n*n!*SeriesCoefficient[Series[Exp[t*x]/(1 - x/t - t^4*x^4), {x, 0, 20}], n]], t], {n, 0, 10}]; Flatten[%] (* Generates row sums *) Table[Apply[Plus, CoefficientList[Expand[t^n*n!*SeriesCoefficient[Series[Exp[t*x]/( 1 - x/t - t^4*x^4), {x, 0, 20}], n]], t]], {n, 0, 10}];
Formula
T(n,k) = [t^k] (t^n * n! * ([x^n] p(x,t))), where p(x,t) = exp(t*x)/(1 - x/t - t^4*x^4).
From Petros Hadjicostas, Apr 15 2020: (Start)
Sum_{n,k >= 0} (T(n,k)/n!) * (x/t)^n * t^k = p(x,t).
T(n,0) = n! = A000142(n) for n >= 0; T(n,2) = n! for n >= 1; T(n,4) = n!/2 = A001710(n) for n >= 2; T(n,6) = n!/6 = A001715(n) for n >= 3.
T(n,2*m) = n! * Sum_{s = 0..m with 4|(m-s)} binomial(n - s - 3*(m-s)/4, (m-s)/4)/s! for n >= 0 and 0 <= m <= n.
T(n,2*n) = A330045(n) for n >= 0. (End)
Extensions
Various sections edited by Petros Hadjicostas, Apr 13 2020
Comments