cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158777 Irregular array T(n,k), read by rows: row n is the polynomial expansion in t of p(x,t) = exp(t*x)/(1 - x/t - t^4 * x^4) with weighting factors t^n*n!.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 2, 0, 1, 6, 0, 6, 0, 3, 0, 1, 24, 0, 24, 0, 12, 0, 4, 0, 25, 120, 0, 120, 0, 60, 0, 20, 0, 245, 0, 121, 720, 0, 720, 0, 360, 0, 120, 0, 2190, 0, 1446, 0, 361, 5040, 0, 5040, 0, 2520, 0, 840, 0, 20370, 0, 15162, 0, 5047, 0, 841, 40320, 0, 40320, 0, 20160, 0, 6720, 0
Offset: 0

Views

Author

Roger L. Bagula, Mar 26 2009

Keywords

Comments

Row sums are A334157: {1, 2, 5, 16, 89, 686, 5917, 54860, 588401, 7370074, ...}.
Outer diagonal is A330045: {1, 1, 1, 1, 25, 121, 361, 841, 42001, 365905, ...}.
From Petros Hadjicostas, Apr 15 2020: (Start)
To prove the general formula below for T(n,2*m), let v = x/t in the equation Sum_{n,k >= 0} (T(n,k)/n!) * (x/t)^n * t^k = p(x,t). We get Sum_{n,k >= 0} (T(n,k)/n!) * v^n * t^k = exp(t^2*v)/(1 - v - t^8*v^4).
Using the Taylor expansions of exp(t^2*v) and 1/(1 - v - t^8*v^4) around v = 0 (from array A180184), we get that Sum_{n,k >= 0} (T(n,k)/n!) * v^n * t^k = (Sum_{n >= 0} (t^2*v)^n/n!) * (Sum_{n >= 0} Sum_{h=0..floor(n/4)} binomial(n - 3*h, h)*t^(8*h)*v^n).
Using the Cauchy product of the above two series, for each n >= 0, we get Sum_{k >= 0} (T(n,k)/n!)*t^k = Sum_{l=0..n} Sum_{h=0..floor(l/4)} (binomial(l - 3*h, h)/(n-l)!)*t^(8*h+2*n-2*l). This implies that T(n,k) = 0 for odd k >= 1.
Letting k = 2*m = 8*h + 2*n - 2*l and s = n - l, we get Sum_{m >= 0} (T(n, 2*m)/n!)*t^(2*m) = Sum_{m >= 0} Sum_{s=0..m with 4|(m-s)} (binomial(n - s - 3*(m - s)/4, (m - s)/4)/s!)*t^(2*m) (and also that T(n,2*j) = 0 for j > m). Equating coefficients, we get the formula for T(n,2*m) shown below. (End)

Examples

			Array T(n,k) (with n >= 0 and 0 <= k <= 2*n) begins as follows:
     1;
     1, 0,    1;
     2, 0,    2, 0,    1;
     6, 0,    6, 0,    3, 0,   1;
    24, 0,   24, 0,   12, 0,   4, 0,    25;
   120, 0,  120, 0,   60, 0,  20, 0,   245, 0,   121;
   720, 0,  720, 0,  360, 0, 120, 0,  2190, 0,  1446, 0,  361;
  5040, 0, 5040, 0, 2520, 0, 840, 0, 20370, 0, 15162, 0, 5047, 0, 841;
  ...
		

Crossrefs

Programs

  • Maple
    # Triangle T(n, k) without the zeros (even k):
    W := proc(n, m) local v, s, h; v := 0;
    for s from 0 to m do
    if 0 = (m - s) mod 4 then
    h := (m - s)/4;
    v := v + binomial(n - s - 3*h, h)/s!;
    end if; end do; n!*v; end proc;
    for n1 from 0 to 20 do
    seq(W(n1,m1), m1=0..n1); end do; # Petros Hadjicostas, Apr 15 2020
  • Mathematica
    (* Generates the sequence in the data section *)
    Table[Expand[t^n*n!*SeriesCoefficient[Series[Exp[t*x]/(1 - x/t - t^4*x^4), {x, 0, 20}], n]], {n, 0, 10}];
    a = Table[CoefficientList[Expand[t^n*n!*SeriesCoefficient[Series[Exp[t*x]/(1 - x/t - t^4*x^4), {x, 0, 20}], n]], t], {n, 0, 10}];
    Flatten[%]
    (* Generates row sums *)
    Table[Apply[Plus, CoefficientList[Expand[t^n*n!*SeriesCoefficient[Series[Exp[t*x]/( 1 - x/t - t^4*x^4), {x, 0, 20}], n]], t]], {n, 0, 10}];

Formula

T(n,k) = [t^k] (t^n * n! * ([x^n] p(x,t))), where p(x,t) = exp(t*x)/(1 - x/t - t^4*x^4).
From Petros Hadjicostas, Apr 15 2020: (Start)
Sum_{n,k >= 0} (T(n,k)/n!) * (x/t)^n * t^k = p(x,t).
T(n,0) = n! = A000142(n) for n >= 0; T(n,2) = n! for n >= 1; T(n,4) = n!/2 = A001710(n) for n >= 2; T(n,6) = n!/6 = A001715(n) for n >= 3.
T(n,2*m) = n! * Sum_{s = 0..m with 4|(m-s)} binomial(n - s - 3*(m-s)/4, (m-s)/4)/s! for n >= 0 and 0 <= m <= n.
T(n,2*n) = A330045(n) for n >= 0. (End)

Extensions

Various sections edited by Petros Hadjicostas, Apr 13 2020