A120375
Integers k such that 2*5^k - 1 is prime.
Original entry on oeis.org
4, 6, 16, 24, 30, 54, 96, 178, 274, 1332, 2766, 3060, 4204, 17736, 190062, 223536, 260400, 683080
Offset: 1
a(1) = 4 since 2*5^4 - 1 = 1249 is the first prime.
-
[n: n in [0..2800] |IsPrime(2*5^n - 1)]; // Vincenzo Librandi, Sep 23 2018
-
for w to 1 do for k from 1 to 2000 do n:=2*5^k-1; if isprime(n) then printf("%d, %d ",k,n) fi od od;
-
Select[Range[0, 100], PrimeQ[2*5^# - 1] &] (* Robert Price, Mar 14 2015 *)
-
isok(k) = ispseudoprime(2*5^k-1); \\ Altug Alkan, Sep 22 2018
a(14) from Herman Jamke (hermanjamke(AT)fastmail.fm), May 02 2007
A120376
Primes of the form 2*5^k - 1.
Original entry on oeis.org
1249, 31249, 305175781249, 119209289550781249, 1862645149230957031249, 111022302462515654042363166809082031249, 25243548967072377773175314089049159349542605923488736152648925781249
Offset: 1
a(1) = 4 since 2*5^4 - 1 = 1249 is the first prime.
-
for w to 1 do for k from 1 to 2000 do n:=2*5^k-1; if isprime(n) then printf("%d, %d",k,n) fi od od;
-
Select[2*5^Range[100]-1,PrimeQ] (* Harvey P. Dale, Jan 26 2019 *)
-
for(k=1, 1e3, if(ispseudoprime(p=2*5^k-1), print1(p, ", "))); \\ Altug Alkan, Sep 22 2018
A050523
Primes of the form 7*2^k - 1.
Original entry on oeis.org
13, 223, 3583, 917503, 14680063, 3758096383, 246290604621823, 1340933598257652751063553648756520535666396731910651903
Offset: 1
A319535
Primes of the form 2*6^k - 1.
Original entry on oeis.org
11, 71, 431, 2591, 15551, 4353564671, 5642219814911, 341163456359156416511, 2046980738154938499071, 20628849596981071092343898111, 26734989077687468135677691953151, 207891275068097752223029732627709951, 269427092488254686881046533485512097791
Offset: 1
2*6^1 - 1 = 11, 2*6^2 - 1 = 71, 2*6^3 - 1 = 431, 2*6^4 - 1 = 2591 and 2*6^5 - 1 = 15551 are primes, but 2*6^6 - 1 = 93311 = 23*4057 is not.
-
[k: n in [1..100] | IsPrime(k) where k is 2*6^n-1]; // K. D. Bajpai, Nov 15 2019
-
A319535:= n-> (2*6^n-1): select(isprime, [seq((A319535(n), n=1..200))]); # K. D. Bajpai, Nov 15 2019
-
Select[Table[2*6^k-1,{k,1600}], PrimeQ[#]&] (* K. D. Bajpai, Nov 15 2019 *)
-
for(n=1, 99, my(t); if(ispseudoprime(t=2*6^n-1), print1(t", ")))
Showing 1-4 of 4 results.
Comments