A158798 a(n) = a(n-1) + 64*a(n-2), a(0)=1, a(1)=8.
1, 8, 72, 584, 5192, 42568, 374856, 3099208, 27089992, 225439304, 1959198792, 16387314248, 141776036936, 1190564148808, 10264230512712, 86460336036424, 743371088849992, 6276832595181128, 53852582281580616, 455569868373172808, 3902135134394332232
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,64).
Programs
-
Magma
I:=[1,8]; [n le 2 select I[n] else Self(n-1) + 64*Self(n-2): n in [1..41]]; // G. C. Greubel, Dec 22 2021
-
Mathematica
LinearRecurrence[{1,64},{1,8},30] (* Harvey P. Dale, Mar 09 2018 *)
-
Sage
[(8*i)^n*( chebyshev_U(n, -i/16) - (7*i/8)*chebyshev_U(n-1, -i/16) ) for n in (0..40)] # G. C. Greubel, Dec 22 2021
Formula
G.f.: (1+7*x)/(1-x-64*x^2).
a(n) = (8*i)^n*( ChebyshevU(n, -i/16) - (7*i/8)*ChebyshevU(n-1, -i/16) ). - G. C. Greubel, Dec 22 2021
Extensions
Corrected and extended by Harvey P. Dale, Mar 09 2018