cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158810 Coefficients of the differentiated row polynomials of the triangular Hadamard matrices of A158800: p(x,n)=If[n less than or equal to 2^m,Sum[H(2^m)[[k]]*x^(1-k),{k,1,n}],If[n greater than m then m+1].

Original entry on oeis.org

0, -1, 0, -2, -1, -2, 3, 0, 0, 0, -4, -1, 0, 0, -4, 5, 0, -2, 0, -4, 0, 6, -1, -2, 3, -4, 5, 6, -7, 0, 0, 0, 0, 0, 0, 0, -8, -1, 0, 0, 0, 0, 0, 0, -8, 9, 0, -2, 0, 0, 0, 0, 0, -8, 0, 10, -1, -2, 3, 0, 0, 0, 0, -8, 9, 10, -11, 0, 0, 0, -4, 0, 0, 0, -8, 0, 0, 0, 12, -1, 0, 0, -4, 5, 0, 0, -8, 9, 0, 0
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Mar 27 2009

Keywords

Comments

Row sums are:
{0, -1, -2, 0, -4, 0, 0, 0, -8, 0, 0, 0, 0, 0, 0, 0,...}.
The absolute values of the row sums are:
{0, 1, 2, 6, 4, 10, 12, 28, 8, 18, 20, 44, 24, 52, 56, 120,...}.
In a quantum Heisenberg matrix mechanics based on the triangular Hadamards
where the H(n) behave like wave functions Phi(n), these polynomials
are equivalent to the time dependent differentials:
Hamiltonian.Phi(n)=-Hbar*I*dPhi(n)/dt

Examples

			{0},
{-1},
{0, -2},
{-1, -2, 3},
{0, 0, 0, -4},
{-1, 0, 0, -4, 5},
{0, -2, 0, -4, 0, 6},
{-1, -2, 3, -4, 5, 6, -7},
{ 0, 0, 0, 0, 0, 0, 0, -8},
{-1, 0, 0, 0, 0, 0, 0, -8, 9},
{0, -2, 0, 0, 0, 0, 0, -8, 0, 10},
{-1, -2, 3, 0, 0, 0, 0, -8, 9, 10, -11},
{0, 0, 0, -4, 0, 0, 0, -8, 0, 0, 0, 12},
{-1, 0, 0, -4, 5, 0, 0, -8, 9, 0, 0, 12, -13},
{0, -2, 0, -4, 0, 6, 0, -8, 0, 10, 0, 12, 0, -14},
{-1, -2, 3, -4, 5, 6, -7, -8, 9, 10, -11, 12, -13, -14, 15}
		

Crossrefs

Programs

  • Mathematica
    Clear[HadamardMatrix];
    MatrixJoinH[A_, B_] := Transpose[Join[Transpose[A], Transpose[B]]];
    KroneckerProduct[M_, N_] := Module[{M1, N1, LM, LN, N2},
    M1 = M;
    N1 = N;
    LM = Length[M1];
    LN = Length[N1];
    Do[M1[[i, j]] = M1[[i, j]]N1, {i, 1, LM}, {j, 1, LM}];
    Do[M1[[i, 1]] = MatrixJoinH[M1[[i, 1]], M1[[i, j]]], {j, 2, LM}, {i, 1, LM}];
    N2 = {};
    Do[AppendTo[N2, M1[[i, 1]]], {i, 1, LM}];
    N2 = Flatten[N2];
    Partition[N2, LM*LN, LM*LN]]
    HadamardMatrix[2] := {{1, 0}, {1, -1}};
    HadamardMatrix[n_] := Module[{m}, m = {{1, 0}, {1, -1}}; KroneckerProduct[m, HadamardMatrix[n/2]]];
    M = HadamardMatrix[16];
    Table[D[Sum[M[[n]][[m]]*x^(m - 1), {m, 1, n}], {x, 1}], {n, 1, Length[M]}];
    Table[CoefficientList[D[Sum[ M[[n]][[m]]*x^(m - 1), {m, 1, n}], {x, 1}], x], {n, 1, Length[M]}];
    Flatten[%]

Formula

Sum of the k-th row polynomial:
p(x,n)=If[n>2^m,Sum[H(2^m)[[k]]*x^(1-k),{k,1,n}]];
t(n,l)=coefficients(p(x,n),x)