A158810 Coefficients of the differentiated row polynomials of the triangular Hadamard matrices of A158800: p(x,n)=If[n less than or equal to 2^m,Sum[H(2^m)[[k]]*x^(1-k),{k,1,n}],If[n greater than m then m+1].
0, -1, 0, -2, -1, -2, 3, 0, 0, 0, -4, -1, 0, 0, -4, 5, 0, -2, 0, -4, 0, 6, -1, -2, 3, -4, 5, 6, -7, 0, 0, 0, 0, 0, 0, 0, -8, -1, 0, 0, 0, 0, 0, 0, -8, 9, 0, -2, 0, 0, 0, 0, 0, -8, 0, 10, -1, -2, 3, 0, 0, 0, 0, -8, 9, 10, -11, 0, 0, 0, -4, 0, 0, 0, -8, 0, 0, 0, 12, -1, 0, 0, -4, 5, 0, 0, -8, 9, 0, 0
Offset: 0
Examples
{0}, {-1}, {0, -2}, {-1, -2, 3}, {0, 0, 0, -4}, {-1, 0, 0, -4, 5}, {0, -2, 0, -4, 0, 6}, {-1, -2, 3, -4, 5, 6, -7}, { 0, 0, 0, 0, 0, 0, 0, -8}, {-1, 0, 0, 0, 0, 0, 0, -8, 9}, {0, -2, 0, 0, 0, 0, 0, -8, 0, 10}, {-1, -2, 3, 0, 0, 0, 0, -8, 9, 10, -11}, {0, 0, 0, -4, 0, 0, 0, -8, 0, 0, 0, 12}, {-1, 0, 0, -4, 5, 0, 0, -8, 9, 0, 0, 12, -13}, {0, -2, 0, -4, 0, 6, 0, -8, 0, 10, 0, 12, 0, -14}, {-1, -2, 3, -4, 5, 6, -7, -8, 9, 10, -11, 12, -13, -14, 15}
Crossrefs
Programs
-
Mathematica
Clear[HadamardMatrix]; MatrixJoinH[A_, B_] := Transpose[Join[Transpose[A], Transpose[B]]]; KroneckerProduct[M_, N_] := Module[{M1, N1, LM, LN, N2}, M1 = M; N1 = N; LM = Length[M1]; LN = Length[N1]; Do[M1[[i, j]] = M1[[i, j]]N1, {i, 1, LM}, {j, 1, LM}]; Do[M1[[i, 1]] = MatrixJoinH[M1[[i, 1]], M1[[i, j]]], {j, 2, LM}, {i, 1, LM}]; N2 = {}; Do[AppendTo[N2, M1[[i, 1]]], {i, 1, LM}]; N2 = Flatten[N2]; Partition[N2, LM*LN, LM*LN]] HadamardMatrix[2] := {{1, 0}, {1, -1}}; HadamardMatrix[n_] := Module[{m}, m = {{1, 0}, {1, -1}}; KroneckerProduct[m, HadamardMatrix[n/2]]]; M = HadamardMatrix[16]; Table[D[Sum[M[[n]][[m]]*x^(m - 1), {m, 1, n}], {x, 1}], {n, 1, Length[M]}]; Table[CoefficientList[D[Sum[ M[[n]][[m]]*x^(m - 1), {m, 1, n}], {x, 1}], x], {n, 1, Length[M]}]; Flatten[%]
Formula
Sum of the k-th row polynomial:
p(x,n)=If[n>2^m,Sum[H(2^m)[[k]]*x^(1-k),{k,1,n}]];
t(n,l)=coefficients(p(x,n),x)
Comments