A158821 Triangle read by rows: row n (n>=0) ends with 1, and for n>=1 begins with n; other entries are zero.
1, 1, 1, 2, 0, 1, 3, 0, 0, 1, 4, 0, 0, 0, 1, 5, 0, 0, 0, 0, 1, 6, 0, 0, 0, 0, 0, 1, 7, 0, 0, 0, 0, 0, 0, 1, 8, 0, 0, 0, 0, 0, 0, 0, 1, 9, 0, 0, 0, 0, 0, 0, 0, 0, 1, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0
Examples
Triangle begins: 1; 1, 1; 2, 0, 1; 3, 0, 0, 1; 4, 0, 0, 0, 1; 5, 0, 0, 0, 0, 1; 6, 0, 0, 0, 0, 0, 1; 7, 0, 0, 0, 0, 0, 0, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Maple
A158821:= proc(n,k) if n = k then 1; elif k = 0 then n; else 0; end if; end proc: # R. J. Mathar, Jan 08 2015
-
Mathematica
T[n_, k_]:= If[k==0, Boole[n==0] +n, If[k==n, 1, 0]]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 22 2021 *) Join[{1},Table[Join[{n},PadLeft[{1},n,0]],{n,15}]]//Flatten (* Harvey P. Dale, Apr 05 2023 *)
-
Sage
def A158821(n,k): if (k==0): return n + bool(n==0) elif (k==n): return 1 else: return 0 flatten([[A158821(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Dec 22 2021
Formula
T(n, k) = A145677(n, n-k-1). - R. J. Mathar, Apr 01 2009
From G. C. Greubel, Dec 22 2021: (Start)
Sum_{k=0..n} T(n, k) = A000027(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A109613(n). (End)