A158867 Triangle T(n, k) = (2*n+1)!! * 2^(1 + floor(n/2) + floor(k/2) + floor((k-1)/2)) * Beta(floor(n/2) + floor((k-1)/2) + 2, floor((n-1)/2) + floor(k/2) + 2), read by rows.
1, 5, 4, 14, 14, 12, 126, 108, 108, 96, 594, 594, 528, 528, 480, 7722, 6864, 6864, 6240, 6240, 5760, 51480, 51480, 46800, 46800, 43200, 43200, 40320, 875160, 795600, 795600, 734400, 734400, 685440, 685440, 645120, 7558200, 7558200, 6976800, 6976800, 6511680, 6511680, 6128640, 6128640, 5806080
Offset: 1
Examples
Triangle begins as: 1; 5, 4; 14, 14, 12; 126, 108, 108, 96; 594, 594, 528, 528, 480; 7722, 6864, 6864, 6240, 6240, 5760; 51480, 51480, 46800, 46800, 43200, 43200, 40320; 875160, 795600, 795600, 734400, 734400, 685440, 685440, 645120; 7558200, 7558200, 6976800, 6976800, 6511680, 6511680, 6128640, 6128640, 5806080;
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
Programs
-
Mathematica
T[n_, k_]:= (2*n+1)!!*2^(1+Floor[n/2]+Floor[k/2]+Floor[(k-1)/2])*Beta[Floor[n/2] +Floor[(k- 1)/2] +2, Floor[(n-1)/2] +Floor[k/2] +2]; Table[T[n, k], {n,10}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 08 2022 *)
-
Sage
def A158867(n,k): return (2*n+1).multifactorial(2)*2^(1+(n//2)+(k//2)+((k-1)//2))*beta(2+(n//2)+((k-1)//2), 2+((n-1)//2)+(k//2)) flatten([[A158867(n,k) for k in (1..n)] for n in (1..10)]) # G. C. Greubel, Mar 08 2022
Formula
T(n, k) = (2*n+1)!! * 2^(1 + floor(n/2) + floor(k/2) + floor((k-1)/2)) * Beta(floor(n/2) + floor((k-1)/2) + 2, floor((n-1)/2) + floor(k/2) + 2).
T(n, n) = A268363(n). - G. C. Greubel, Mar 08 2022
Extensions
Edited by G. C. Greubel, Mar 08 2022