cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158867 Triangle T(n, k) = (2*n+1)!! * 2^(1 + floor(n/2) + floor(k/2) + floor((k-1)/2)) * Beta(floor(n/2) + floor((k-1)/2) + 2, floor((n-1)/2) + floor(k/2) + 2), read by rows.

Original entry on oeis.org

1, 5, 4, 14, 14, 12, 126, 108, 108, 96, 594, 594, 528, 528, 480, 7722, 6864, 6864, 6240, 6240, 5760, 51480, 51480, 46800, 46800, 43200, 43200, 40320, 875160, 795600, 795600, 734400, 734400, 685440, 685440, 645120, 7558200, 7558200, 6976800, 6976800, 6511680, 6511680, 6128640, 6128640, 5806080
Offset: 1

Views

Author

Roger L. Bagula, Mar 28 2009

Keywords

Examples

			Triangle begins as:
        1;
        5,       4;
       14,      14,      12;
      126,     108,     108,      96;
      594,     594,     528,     528,     480;
     7722,    6864,    6864,    6240,    6240,    5760;
    51480,   51480,   46800,   46800,   43200,   43200,   40320;
   875160,  795600,  795600,  734400,  734400,  685440,  685440,  645120;
  7558200, 7558200, 6976800, 6976800, 6511680, 6511680, 6128640, 6128640, 5806080;
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= (2*n+1)!!*2^(1+Floor[n/2]+Floor[k/2]+Floor[(k-1)/2])*Beta[Floor[n/2] +Floor[(k- 1)/2] +2, Floor[(n-1)/2] +Floor[k/2] +2];
    Table[T[n, k], {n,10}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 08 2022 *)
  • Sage
    def A158867(n,k): return (2*n+1).multifactorial(2)*2^(1+(n//2)+(k//2)+((k-1)//2))*beta(2+(n//2)+((k-1)//2), 2+((n-1)//2)+(k//2))
    flatten([[A158867(n,k) for k in (1..n)] for n in (1..10)]) # G. C. Greubel, Mar 08 2022

Formula

T(n, k) = (2*n+1)!! * 2^(1 + floor(n/2) + floor(k/2) + floor((k-1)/2)) * Beta(floor(n/2) + floor((k-1)/2) + 2, floor((n-1)/2) + floor(k/2) + 2).
T(n, n) = A268363(n). - G. C. Greubel, Mar 08 2022

Extensions

Edited by G. C. Greubel, Mar 08 2022