A158933 Decimal expansion of Sum_{n>=1} ((-1)^(n+1))/F(n) where F(n) is the n-th Fibonacci number A000045(n).
2, 8, 9, 1, 4, 4, 6, 4, 8, 5, 7, 0, 6, 7, 1, 5, 8, 3, 1, 1, 2, 3, 0, 5, 5, 0, 9, 6, 1, 5, 7, 2, 9, 1, 6, 6, 9, 5, 4, 8, 8, 1, 9, 5, 1, 5, 8, 9, 6, 9, 1, 3, 6, 0, 0, 2, 5, 0, 2, 6, 4, 8, 5, 0, 6, 3, 0, 3, 5, 7, 6, 1, 7, 3, 8, 8, 6, 4, 5, 5, 1, 5, 8, 2, 4, 1, 1, 5, 8, 3, 1, 8, 2, 8, 5
Offset: 0
Examples
0.2891446485706715831123055096157291669...
Links
- Richard André-Jeannin, Irrationalité de la somme des inverses de certaines suites récurrentes, Comptes Rendus de l'Académie des Sciences - Series I - Mathematics, Vol. 308, No. 19 (1989), pp. 539-541.
- Yohei Tachiya, Irrationality of certain Lambert series, Tokyo Journal of Mathematics, Vol. 27, No. 1 (2004), pp. 75-85.
- Eric Weisstein's World of Mathematics, Reciprocal Fibonacci Constant.
Programs
-
Maple
with(combinat, fibonacci):Digits:=100:s:=0:for n from 1 to 2000 do: a1:=fibonacci(n):s:=s+evalf(1/a1)*(-1)^(n+1):od:print(s):
-
Mathematica
digits = 95; NSum[(-1)^(n+1)*(1/Fibonacci[n]), {n, 1, Infinity}, WorkingPrecision -> digits+1, NSumTerms -> digits] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Jan 28 2014 *)
-
PARI
-sumalt(n=1,(-1)^n/fibonacci(n)) \\ Charles R Greathouse IV, Oct 03 2016
Formula
Equals sqrt(5) * Sum_{k>=0} (-1)^k/(phi^(2*k+1) + (-1)^k), where phi is the golden ratio (A001622). - Amiram Eldar, Oct 04 2020
Equals 1 - A324007. - Amiram Eldar, Feb 09 2023
Extensions
Offset corrected by Arkadiusz Wesolowski, Jun 28 2011
Comments