cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158933 Decimal expansion of Sum_{n>=1} ((-1)^(n+1))/F(n) where F(n) is the n-th Fibonacci number A000045(n).

Original entry on oeis.org

2, 8, 9, 1, 4, 4, 6, 4, 8, 5, 7, 0, 6, 7, 1, 5, 8, 3, 1, 1, 2, 3, 0, 5, 5, 0, 9, 6, 1, 5, 7, 2, 9, 1, 6, 6, 9, 5, 4, 8, 8, 1, 9, 5, 1, 5, 8, 9, 6, 9, 1, 3, 6, 0, 0, 2, 5, 0, 2, 6, 4, 8, 5, 0, 6, 3, 0, 3, 5, 7, 6, 1, 7, 3, 8, 8, 6, 4, 5, 5, 1, 5, 8, 2, 4, 1, 1, 5, 8, 3, 1, 8, 2, 8, 5
Offset: 0

Views

Author

Michel Lagneau, Mar 26 2011

Keywords

Comments

André-Jeannin (1989) proved that this constant is irrational, and Tachiya (2004) proved that it does not belong to the quadratic number field Q(sqrt(5)). - Amiram Eldar, Oct 30 2020

Examples

			0.2891446485706715831123055096157291669...
		

Crossrefs

Programs

  • Maple
    with(combinat, fibonacci):Digits:=100:s:=0:for n from 1 to 2000 do: a1:=fibonacci(n):s:=s+evalf(1/a1)*(-1)^(n+1):od:print(s):
  • Mathematica
    digits = 95; NSum[(-1)^(n+1)*(1/Fibonacci[n]), {n, 1, Infinity}, WorkingPrecision -> digits+1, NSumTerms -> digits] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Jan 28 2014 *)
  • PARI
    -sumalt(n=1,(-1)^n/fibonacci(n)) \\ Charles R Greathouse IV, Oct 03 2016

Formula

Equals sqrt(5) * Sum_{k>=0} (-1)^k/(phi^(2*k+1) + (-1)^k), where phi is the golden ratio (A001622). - Amiram Eldar, Oct 04 2020
Equals A153387 - A153386. - Joerg Arndt, Oct 04 2020
Equals 1 - A324007. - Amiram Eldar, Feb 09 2023

Extensions

Offset corrected by Arkadiusz Wesolowski, Jun 28 2011