cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158960 Numerator of Hermite(n, 1/5).

Original entry on oeis.org

1, 2, -46, -292, 6316, 71032, -1436936, -24183472, 454560656, 10582510112, -183387274976, -5658029605952, 89546942024896, 3573911647620992, -51057689020940416, -2603853531376575232, 33085559702952161536, 2149253944507164508672
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Comments

The denominators are 5^n = A000351(n) (conjectured). - M. F. Hasler, Feb 16 2014

Examples

			Numerators of 1, 2/5, -46/25, -292/125, 6316/625, 71032/3125, -1436936/15625,..
		

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(2/5)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jun 02 2018
  • Maple
    A158960 := proc(n)
        orthopoly[H](n,1/5) ;
        numer(%) ;
    end proc: # R. J. Mathar, Feb 16 2014
  • Mathematica
    Numerator[Table[HermiteH[n,1/5],{n,0,50}]] (* Vladimir Joseph Stephan Orlovsky, Mar 23 2011*)
  • PARI
    A158960 = n->numerator(polhermite(n,1/5)) \\ M. F. Hasler, Feb 16 2014
    

Formula

D-finite with recurrence a(n) -2*a(n-1) +50*(n-1)*a(n-2)=0. [DLMF] - R. J. Mathar, Feb 16 2014
a(n) = (-1)^floor(n/2)*2^ceiling(n/2)*A237987(n). - M. F. Hasler, Feb 16 2014
From G. C. Greubel, Jun 09 2018: (Start)
a(n) = 5^n * Hermite(n,1/5).
E.g.f.: exp(2*x-25*x^2).
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*n!*(2/5)^(n-2k)/(k!*(n-2k)!). (End)