A158961 Numerator of Hermite(n, 2/5).
1, 4, -34, -536, 2956, 119024, -262904, -36758816, -55018864, 14483450944, 82692292576, -6910956301696, -73124586123584, 3854075436523264, 62947282726422656, -2446063674660594176, -56994716743459368704, 1728872072754637865984
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..450
Programs
-
Magma
[Numerator((&+[(-1)^k*Factorial(n)*(4/5)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 09 2018
-
Mathematica
Numerator[Table[HermiteH[n,2/5],{n,0,50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 01 2011 *) Table[5^n*HermiteH[n, 2/5], {n,0,30}] (* G. C. Greubel, Jul 09 2018 *)
-
PARI
a(n)=numerator(polhermite(n,2/5)) \\ Charles R Greathouse IV, Jan 29 2016
Formula
From G. C. Greubel, Jul 09 2018: (Start)
a(n) = 5^n * Hermite(n, 2/5).
E.g.f.: exp(4*x-25*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(4/5)^(n-2*k)/(k!*(n-2*k)!)). (End)