cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158965 Numerator of Hermite(n, 3/5).

Original entry on oeis.org

1, 6, -14, -684, -2004, 124776, 1249656, -29934864, -616988784, 8272012896, 327277030176, -2172344266944, -193036432198464, 145187966975616, 126344808730855296, 656437275502200576, -90819982895128268544, -1070069717772530072064, 70776567154223847830016
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Crossrefs

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(6/5)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 13 2018
  • Mathematica
    Numerator[Table[HermiteH[n,3/5],{n,0,50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 01 2011*)
    Table[5^n*HermiteH[n, 3/5], {n,0,30}] (* G. C. Greubel, Jul 13 2018 *)
  • PARI
    a(n)=numerator(polhermite(n,3/5)) \\ Charles R Greathouse IV, Jan 29 2016
    
  • PARI
    x='x+O('x^30); Vec(serlaplace(exp(6*x - 25*x^2))) \\ G. C. Greubel, Jul 13 2018
    

Formula

From G. C. Greubel, Jun 02 2018: (Start)
a(n) = 5^n * Hermite(n, 3/5).
E.g.f.: exp(6*x - 25*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(6/5)^(n-2*k)/(k!*(n-2*k)!)). (End)