A158965 Numerator of Hermite(n, 3/5).
1, 6, -14, -684, -2004, 124776, 1249656, -29934864, -616988784, 8272012896, 327277030176, -2172344266944, -193036432198464, 145187966975616, 126344808730855296, 656437275502200576, -90819982895128268544, -1070069717772530072064, 70776567154223847830016
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..450
Programs
-
Magma
[Numerator((&+[(-1)^k*Factorial(n)*(6/5)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 13 2018
-
Mathematica
Numerator[Table[HermiteH[n,3/5],{n,0,50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 01 2011*) Table[5^n*HermiteH[n, 3/5], {n,0,30}] (* G. C. Greubel, Jul 13 2018 *)
-
PARI
a(n)=numerator(polhermite(n,3/5)) \\ Charles R Greathouse IV, Jan 29 2016
-
PARI
x='x+O('x^30); Vec(serlaplace(exp(6*x - 25*x^2))) \\ G. C. Greubel, Jul 13 2018
Formula
From G. C. Greubel, Jun 02 2018: (Start)
a(n) = 5^n * Hermite(n, 3/5).
E.g.f.: exp(6*x - 25*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(6/5)^(n-2*k)/(k!*(n-2*k)!)). (End)