A159008 Positive numbers k such that k^2 == 2 (mod 89).
25, 64, 114, 153, 203, 242, 292, 331, 381, 420, 470, 509, 559, 598, 648, 687, 737, 776, 826, 865, 915, 954, 1004, 1043, 1093, 1132, 1182, 1221, 1271, 1310, 1360, 1399, 1449, 1488, 1538, 1577, 1627, 1666, 1716, 1755, 1805, 1844, 1894, 1933, 1983, 2022, 2072
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Crossrefs
Cf. A159007.
Programs
-
Magma
I:=[25, 64, 114]; [n le 3 select I[n] else Self(n-1)+Self(n-2)-Self(n-3): n in [1..60]]; // Vincenzo Librandi, Mar 02 2012
-
Mathematica
LinearRecurrence[{1, 1, -1}, {25, 64, 114}, 50] (* Vincenzo Librandi, Mar 02 2012 *) Select[Range[2100],PowerMod[#,2,89]==2&] (* Harvey P. Dale, May 09 2019 *)
-
PARI
for(n=1, 60, print1((89+11*(-1)^(n-1)+178*(n-1))/4", ")); \\ Vincenzo Librandi, Mar 02 2012
Formula
a(n) = a(n-1) + a(n-2) - a(n-3).
G.f.: x*(25 + 39*x + 25*x^2)/((1+x)*(x-1)^2).
a(n) = (89 + 11*(-1)^(n-1) + 178*(n-1))/4.
Sum_{n>=1} (-1)^(n+1)/a(n) = tan(39*Pi/178)*Pi/89. - Amiram Eldar, Feb 26 2023
Extensions
Slightly edited by R. J. Mathar, Jul 26 2009
Comments