A204769 a(n) = 151*(n-1) - a(n-1) with n>1, a(1)=46.
46, 105, 197, 256, 348, 407, 499, 558, 650, 709, 801, 860, 952, 1011, 1103, 1162, 1254, 1313, 1405, 1464, 1556, 1615, 1707, 1766, 1858, 1917, 2009, 2068, 2160, 2219, 2311, 2370, 2462, 2521, 2613, 2672, 2764, 2823
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Crossrefs
Programs
-
Magma
[(-151-33*(-1)^n+302*n)/4: n in [1..60]];
-
Mathematica
LinearRecurrence[{1,1,-1}, {46,105,197}, 40] (* or *) CoefficientList[Series[x*(46+59*x+46*x^2)/((1+x)*(x-1)^2),{x,0,33}],x] (* or *) a[1] = 46; a[n_] := a[n] = 151*(n-1) - a[n-1]; Table[a[n], {n, 1, 40}]
-
PARI
a(n)=(-151-33*(-1)^n+302*n)/4 \\ Charles R Greathouse IV, Oct 16 2015
Formula
G.f.: x*(46+59*x+46*x^2)/((1+x)*(x-1)^2).
a(n) = (-151-33*(-1)^n+302*n)/4.
a(n) = a(n-1) +a(n-2) -a(n-3).
Sum_{n>=1} (-1)^(n+1)/a(n) = tan(59*Pi/302)*Pi/151. - Amiram Eldar, Feb 28 2023
Comments