A206525 a(n) = 113*(n-1) - a(n-1) with n>1, a(1)=51.
51, 62, 164, 175, 277, 288, 390, 401, 503, 514, 616, 627, 729, 740, 842, 853, 955, 966, 1068, 1079, 1181, 1192, 1294, 1305, 1407, 1418, 1520, 1531, 1633, 1644, 1746, 1757, 1859, 1870, 1972, 1983, 2085, 2096, 2198, 2209
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Crossrefs
Programs
-
Magma
[(-113-91*(-1)^n+226*n)/4: n in [1..60]];
-
Mathematica
LinearRecurrence[{1, 1, -1}, {51, 62, 164}, 40] (* or *) CoefficientList[Series[x*(51+11*x+51*x^2)/((1+x)*(x-1)^2), {x, 0, 40}], x] (* or *) a[1] = 51; a[n_] := a[n] = 113*(n-1) - a[n-1]; Table[a[n], {n, 1, 40}]
Formula
a(n) = a(n-2) + 113.
G.f.: x*(51+11*x+51*x^2)/((1+x)*(x-1)^2).
a(n) = (-113-91*(-1)^n+226*n)/4.
a(n) = a(n-1)+a(n-2)-a(n-3).
Sum_{n>=1} (-1)^(n+1)/a(n) = tan(11*Pi/226)*Pi/113. - Amiram Eldar, Feb 28 2023
Comments