A159041 Triangle read by rows: row n (n>=0) gives the coefficients of the polynomial p(n,x) of degree n defined in comments.
1, 1, 1, 1, -10, 1, 1, -25, -25, 1, 1, -56, 246, -56, 1, 1, -119, 1072, 1072, -119, 1, 1, -246, 4047, -11572, 4047, -246, 1, 1, -501, 14107, -74127, -74127, 14107, -501, 1, 1, -1012, 46828, -408364, 901990, -408364, 46828, -1012, 1, 1, -2035, 150602, -2052886, 7685228, 7685228, -2052886, 150602, -2035, 1
Offset: 0
Examples
Triangle begins as follows: 1; 1, 1; 1, -10, 1; 1, -25, -25, 1; 1, -56, 246, -56, 1; 1, -119, 1072, 1072, -119, 1; 1, -246, 4047, -11572, 4047, -246, 1; 1, -501, 14107, -74127, -74127, 14107, -501, 1; 1, -1012, 46828, -408364, 901990, -408364, 46828, -1012, 1; 1, -2035, 150602, -2052886, 7685228, 7685228, -2052886, 150602, -2035, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- Roger L. Bagula, Another Mathematica program for A159041.
Crossrefs
Programs
-
Maple
A008292 := proc(n, k) option remember; if k < 1 or k > n then 0; elif k = 1 or k = n then 1; else k*procname(n-1, k)+(n-k+1)*procname(n-1, k-1) ; end if; end proc: # row n of new triangle T(n,k) in terms of old triangle U(n,k): p:=proc(n) local k; global U; simplify( (1/(1-x)) * ( add((-1)^k*U(n+2,k+1)*x^k,k=0..floor(n/2)) + add((-1)^(n+k)*U(n+2,k+1)*x^k, k=ceil((n+2)/2)..n+1 )) ); end; U:=A008292; for n from 0 to 6 do lprint(simplify(p(n))); od: # N. J. A. Sloane, May 11 2013 A159041 := proc(n, k) if k = 0 then 1; elif k <= floor(n/2) then A159041(n, k-1)+(-1)^k*A008292(n+2, k+1) ; else A159041(n, n-k) ; end if; end proc: # R. J. Mathar, May 08 2013
-
Mathematica
A[n_, 1] := 1; A[n_, n_] := 1; A[n_, k_] := (n - k + 1)A[n - 1, k - 1] + k A[n - 1, k]; p[x_, n_] = Sum[x^i*If[i == Floor[n/2] && Mod[n, 2] == 0, 0, If[i <= Floor[n/2], (-1)^i*A[n, i], -(-1)^(n - i)*A[n, i]]], {i, 0, n}]/(1 - x); Table[CoefficientList[FullSimplify[p[x, n]], x], {n, 1, 11}]; Flatten[%]
-
Sage
def A008292(n,k): return sum( (-1)^j*(k-j)^n*binomial(n+1,j) for j in (0..k) ) @CachedFunction def T(n,k): if (k==0 or k==n): return 1 elif (k <= (n//2)): return T(n,k-1) + (-1)^k*A008292(n+2,k+1) else: return T(n,n-k) flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 18 2022
Formula
T(n, k) = T(n, k-1) + (-1)^k*A008292(n+2, k+1) if k <= floor(n/2), otherwise T(n, n-k), with T(n, 0) = T(n, n) = 1. - R. J. Mathar, May 08 2013
Extensions
Edited by N. J. A. Sloane, May 07 2013, May 11 2013
Comments