A159249 Numerator of Hermite(n, 3/10).
1, 3, -41, -423, 4881, 99243, -922521, -32540463, 225260961, 13691968083, -60291528201, -7026858626103, 12079764632241, 4252354469558523, 4905216397718919, -2961932479497809343, -12564709736782617279, 2331851854387899622563, 17675558839428923554839
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..450
Crossrefs
Cf. A159247.
Programs
-
Magma
[Numerator((&+[(-1)^k*Factorial(n)*(3/5)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jun 28 2018
-
Mathematica
Numerator[Table[HermiteH[n,3/10],{n,0,50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 12 2011 *)
-
PARI
a(n)=numerator(polhermite(n,3/10)) \\ Charles R Greathouse IV, Jan 29 2016
Formula
From G. C. Greubel, Jun 02 2018: (Start)
a(n) = 5^n * Hermite(n, 3/10).
E.g.f.: exp(3*x-25*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(3/5)^(n-2*k)/(k!*(n-2*k)!)). (End)