A159252 Numerator of Hermite(n, 7/10).
1, 7, -1, -707, -4799, 107807, 1954399, -18661307, -814668799, 1761841207, 378933847999, 1771616332493, -196012302071999, -2435055913999793, 110362604948800799, 2477077374441460693, -65432412090510374399, -2439688784186741175193
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..450
Crossrefs
Cf. A159247.
Programs
-
Magma
[Numerator((&+[(-1)^k*Factorial(n)*(7/5)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jun 28 2018
-
Mathematica
Numerator[Table[HermiteH[n,7/10],{n,0,50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 12 2011 *)
-
PARI
a(n)=numerator(polhermite(n,7/10)) \\ Charles R Greathouse IV, Jan 29 2016
Formula
From G. C. Greubel, Jun 28 2018: (Start)
a(n) = 5^n * Hermite(n, 7/10).
E.g.f.: exp(7*x-25*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(7/5)^(n-2*k)/(k!*(n-2*k)!)). (End)