A159279 Numerator of Hermite(n, 9/10).
1, 9, 31, -621, -10239, 32049, 2848191, 16019019, -852695679, -14081868711, 256976237151, 9353720489859, -57153446024319, -6126613308134271, -17989779857401089, 4126721296977379899, 50632826565847235841, -2845681598489278796631
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..450
Crossrefs
Cf. A159247.
Programs
-
Magma
[Numerator((&+[(-1)^k*Factorial(n)*(9/5)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jun 27 2018
-
Mathematica
Numerator[Table[HermiteH[n,3/10],{n,0,50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 12 2011 *) Table[5^n*HermiteH[n, 9/10], {n,0,30}] (* G. C. Greubel, Jun 27 2018 *)
-
PARI
a(n)=numerator(polhermite(n,9/10)) \\ Charles R Greathouse IV, Jan 29 2016
Formula
From G. C. Greubel, Jun 27 2018: (Start)
a(n) = 5^n * Hermite(n, 9/10).
E.g.f.: exp(9*x - 25*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(9/5)^(n-2*k)/(k!*(n-2*k)!)). (End)