cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159280 Numerator of Hermite(n, 1/11).

Original entry on oeis.org

1, 2, -238, -1444, 169900, 1737592, -202103816, -2927191216, 336509481872, 6340061157920, -720237529201376, -16783423060569152, 1883705456612924608, 52506471481118666624, -5821124423542023483520, -189534174225114089489152, 20751613309007317066199296
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Crossrefs

The denominators are A001020.

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(2/22)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jun 08 2018
  • Mathematica
    Numerator[Table[HermiteH[n,1/11],{n,0,50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 12 2011 *)
  • PARI
    a(n)=polhermite(n,1/11)*11^n \\ Charles R Greathouse IV, Jun 20 2012
    
  • PARI
    a(n)=numerator(polhermite(n,1/11)) \\ G. C. Greubel, Jun 08 2018
    
  • Python
    from sympy import hermite
    def a(n): return hermite(n, 1/11)*11**n # Indranil Ghosh, May 26 2017
    

Formula

From G. C. Greubel, Jun 08 2018: (Start)
a(n) = 11^n * Hermite(n,1/11).
E.g.f.: exp(2*x-121*x^2).
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*n!*(2/11)^(n-2k)/(k!*(n-2k)!). (End)