A159348 Transform of the finite sequence (1, 0, -1, 0, 1) by the T_{0,0} transform (see link).
1, 1, 1, 4, 11, 24, 55, 128, 298, 693, 1611, 3745, 8706, 20239, 47050, 109378, 254273, 591113, 1374171, 3194560, 7426451, 17264404, 40134870, 93302253, 216901423, 504234633, 1172203306, 2725042075, 6334954246, 14726981894, 34236079265
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2500
- Richard Choulet, Curtz-like transformation.
- Index entries for linear recurrences with constant coefficients, signature (3,-2,1).
Programs
-
Magma
I:=[11,24,55]; [1,1,1,4] cat [n le 3 select I[n] else 3*Self(n-1) - 2*Self(n-2) +Self(n-3): n in [1..30]]; // G. C. Greubel, Jun 16 2018
-
Maple
a(0):=1: a(1):=1:a(2):=1: a(3):=4:a(4):=11:a(5):=24:a(6):=55:for n from 4 to 31 do a(n+3):=3*a(n+2)-2*a(n+1)+a(n):od:seq(a(i),i=0..31);
-
Mathematica
Join[{1,1,1,4},LinearRecurrence[{3,-2,1},{11,24,55},40]] (* or *) CoefficientList[Series[(-1+2 x-2 x^3+2 x^5-x^6)/(-1+3 x-2 x^2+x^3),{x,0,45}],x](* Harvey P. Dale, Oct 04 2011 *)
-
PARI
m=50; v=concat([11, 24, 55], vector(m-3)); for(n=4, m, v[n]= 3*v[n-1] -2*v[n-2] +v[n-3]); concat([1,1,1,4], v) \\ G. C. Greubel, Jun 16 2018
Formula
O.g.f.: f(z) = ((1-z)^2/(1-3*z+2*z^2-z^3))*(1-z^2+z^4).
a(n) = 3*a(n-1) - 2*a(n-2) + a(n-3) for n>=7, with a(0)=1, a(1)=1, a(2)=1, a(3)=4, a(4)=11, a(5)=24, a(6)=55.