A159449 Numerator of Hermite(n, 6/11).
1, 12, -98, -6984, -12660, 6608592, 94621704, -8460215136, -261811748208, 13237235524800, 729072813894624, -23285236203280512, -2220214665026855232, 40977749954004344064, 7476528335622538688640, -49114276816696253425152, -27729169180110170480865024
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..435
Crossrefs
Cf. A159280.
Programs
-
Magma
[Numerator((&+[(-1)^k*Factorial(n)*(12/11)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jun 15 2018
-
Mathematica
Numerator[Table[HermiteH[n,6/11],{n,0,50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 12 2011 *)
-
PARI
a(n)=numerator(polhermite(n,6/11)) \\ Charles R Greathouse IV, Jan 29 2016
Formula
From G. C. Greubel, Jun 15 2018: (Start)
a(n) = 11^n * Hermite(n,6/11).
E.g.f.: exp(12*x-121*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(12/11)^(n-2*k)/(k!*(n-2*k)!)). (End)