A159454 Numerator of Hermite(n, 8/11).
1, 16, 14, -7520, -130484, 5191616, 240951496, -3683002496, -467099874160, -343305154304, 1011850643451616, 17020408768641536, -2421219872569937216, -88166785025254016000, 6206489158700958225536, 398012894204775937816576, -16161349338808063353630464
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..434
Crossrefs
Cf. A159280.
Programs
-
Magma
[Numerator((&+[(-1)^k*Factorial(n)*(16/11)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jun 15 2018
-
Mathematica
Numerator[Table[HermiteH[n,8/11],{n,0,50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 12 2011 *)
-
PARI
a(n)=numerator(polhermite(n,8/11)) \\ Charles R Greathouse IV, Jan 29 2016
Formula
From G. C. Greubel, Jun 15 2018: (Start)
a(n) = 11^n * Hermite(n,8/11).
E.g.f.: exp(16*x-121*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(16/11)^(n-2*k)/(k!*(n-2*k)!)). (End)