A159466 Positive numbers y such that y^2 is of the form x^2 + (x+127)^2 with integer x.
113, 127, 145, 533, 635, 757, 3085, 3683, 4397, 17977, 21463, 25625, 104777, 125095, 149353, 610685, 729107, 870493, 3559333, 4249547, 5073605, 20745313, 24768175, 29571137, 120912545, 144359503, 172353217, 704729957, 841388843, 1004548165
Offset: 1
Examples
(-15, a(1)) = (-15, 113) is a solution: (-15)^2 + (-15+127)^2 = 225 + 12544 = 12769 = 113^2. (A129992(1), a(2)) = (0, 127) is a solution: 0^2 + (0+127)^2 = 16129 = 127^2. (A129992(3), a(4)) = (308, 533) is a solution: 308^2 + (308+127)^2 = 94864 + 189225 = 284089 = 533^2.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..3900
- Index entries for linear recurrences with constant coefficients, signature (0,0,6,0,0,-1).
Crossrefs
Programs
-
Magma
I:=[113,127,145,533,635,757]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..30]]; // G. C. Greubel, Jun 15 2018
-
Mathematica
LinearRecurrence[{0,0,6,0,0,-1},{113,127,145,533,635,757},50] (* Harvey P. Dale, Feb 06 2015 *)
-
PARI
{forstep(n=-16, 500000000, [1, 3], if(issquare(2*n^2+254*n+16129, &k), print1(k, ",")))}
Formula
a(n) = 6*a(n-3) - a(n-6)for n > 6; a(1)=113, a(2)=127, a(3)=145, a(4)=533, a(5)=635, a(6)=757.
G.f.: (1-x)*(113+240*x+385*x^2+240*x^3+113*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 127*A001653(k) for k >= 1.
Comments