cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159466 Positive numbers y such that y^2 is of the form x^2 + (x+127)^2 with integer x.

Original entry on oeis.org

113, 127, 145, 533, 635, 757, 3085, 3683, 4397, 17977, 21463, 25625, 104777, 125095, 149353, 610685, 729107, 870493, 3559333, 4249547, 5073605, 20745313, 24768175, 29571137, 120912545, 144359503, 172353217, 704729957, 841388843, 1004548165
Offset: 1

Views

Author

Klaus Brockhaus, Apr 13 2009

Keywords

Comments

(-15, a(1)) and (A129992(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2 + (x+127)^2 = y^2.
Lim_{n -> infinity} a(n)/a(n-3) = 3 + 2*sqrt(2).
Lim_{n -> infinity} a(n)/a(n-1) = (129 + 16*sqrt(2))/127 for n mod 3 = {0, 2}.
Lim_{n -> infinity} a(n)/a(n-1) = (34947 + 21922*sqrt(2))/127^2 for n mod 3 = 1.

Examples

			(-15, a(1)) = (-15, 113) is a solution: (-15)^2 + (-15+127)^2 = 225 + 12544 = 12769 = 113^2.
(A129992(1), a(2)) = (0, 127) is a solution: 0^2 + (0+127)^2 = 16129 = 127^2.
(A129992(3), a(4)) = (308, 533) is a solution: 308^2 + (308+127)^2 = 94864 + 189225 = 284089 = 533^2.
		

Crossrefs

Cf. A129992, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A159467 (decimal expansion of (129+16*sqrt(2))/127), A159468 (decimal expansion of (34947+21922*sqrt(2))/127^2).

Programs

  • Magma
    I:=[113,127,145,533,635,757]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..30]]; // G. C. Greubel, Jun 15 2018
  • Mathematica
    LinearRecurrence[{0,0,6,0,0,-1},{113,127,145,533,635,757},50] (* Harvey P. Dale, Feb 06 2015 *)
  • PARI
    {forstep(n=-16, 500000000, [1, 3], if(issquare(2*n^2+254*n+16129, &k), print1(k, ",")))}
    

Formula

a(n) = 6*a(n-3) - a(n-6)for n > 6; a(1)=113, a(2)=127, a(3)=145, a(4)=533, a(5)=635, a(6)=757.
G.f.: (1-x)*(113+240*x+385*x^2+240*x^3+113*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 127*A001653(k) for k >= 1.