cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A159513 Numerator of Hermite(n, 1/15).

Original entry on oeis.org

1, 2, -446, -2692, 596716, 6039032, -1330532936, -18966452272, 4153245843856, 76585719866912, -16667474227882976, -377970687856869952, 81748056052306991296, 2204537826531711723392, -473817052252932475634816, -14836222411655648808639232, 3168592657883982912917729536
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Crossrefs

Cf. A159512.

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(2/15)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jun 09 2018
  • Mathematica
    Numerator[Table[HermiteH[n,1/15],{n,0,50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 28 2011 *)
  • PARI
    a(n)=numerator(polhermite(n,1/15)) \\ Charles R Greathouse IV, Jan 29 2016
    

Formula

From G. C. Greubel, Jun 09 2018: (Start)
a(n) = 15^n * Hermite(n,1/15).
E.g.f.: exp(2*x-225*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(2/15)^(n-2k)/(k!*(n-2k)!)). (End)
Showing 1-1 of 1 results.