cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159515 Numerator of Hermite(n, 4/15).

Original entry on oeis.org

1, 8, -386, -10288, 438796, 22028768, -811060856, -65966160448, 2027112412816, 253695076915328, -6180244656582176, -1191069803371633408, 21063652623108703936, 6600286159191690034688, -70420078571652397748096, -42145163431480866400519168, 138174222906806753595494656
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Crossrefs

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(8/15)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jun 11 2018
  • Mathematica
    Numerator[Table[HermiteH[n,4/15],{n,0,50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 28 2011 *)
  • PARI
    a(n)=numerator(polhermite(n,4/15)) \\ Charles R Greathouse IV, Jan 29 2016
    

Formula

From G. C. Greubel, Jun 11 2018: (Start)
a(n) = 15^n * Hermite(n,4/15).
E.g.f.: exp(8*x-225*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(8/15)^(n-2*k)/(k!*(n-2*k)!)). (End)