A159521 Numerator of Hermite(n, 1/16).
1, 1, -127, -383, 48385, 244481, -30721919, -218483327, 27308356097, 251035282945, -31208190940799, -352533353110399, 43588599491534593, 585079829869107457, -71946349724044455295, -1120409404849485018239, 137016582065315869148161
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..450
Crossrefs
Cf. A159513.
Programs
-
Magma
[Numerator((&+[(-1)^k*Factorial(n)*(1/8)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jun 09 2018
-
Mathematica
Numerator[Table[HermiteH[n,1/16],{n,0,50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 28 2011 *)
-
PARI
a(n)=numerator(polhermite(n,1/16)) \\ Charles R Greathouse IV, Jan 29 2016
Formula
From G. C. Greubel, Jun 09 2018: (Start)
a(n) = 8^n * Hermite(n,1/16).
E.g.f.: exp(2*x-64*x^2).
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*n!*(1/8)^(n-2k)/(k!*(n-2k)!). (End)