cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159530 Numerator of Hermite(n, 2/17).

Original entry on oeis.org

1, 4, -562, -6872, 947020, 19676144, -2658183224, -78869600288, 10439530923152, 406451155424320, -52680635240539424, -2560010219314727296, 324703437982090748608, 19055044633095311519488, -2363601454465048638962560, -163647826988867455371547136
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Crossrefs

The denominators are the powers of 17, A001026.

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(4/17)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jun 09 2018
  • Mathematica
    Numerator[Table[HermiteH[n,2/17],{n,0,50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 29 2011 *)
  • PARI
    /* needs version >= 2.4 */
    A159530(n)=numerator(polhermite(n,2/17)); /* Joerg Arndt, Apr 30 2011 */
    

Formula

From G. C. Greubel, Jun 02 2018: (Start)
a(n) = 17^n * Hermite(n,2/17).
E.g.f.: exp(4*x-289*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(4/17)^(n-2*k)/(k!*(n-2*k)!)). (End)