cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159532 Numerator of Hermite(n, 4/17).

Original entry on oeis.org

1, 8, -514, -13360, 784396, 37163488, -1969596536, -144639748672, 6811869595280, 723309154621568, -29648872397674016, -4417917892894055168, 153164187561258952384, 31867992005603238264320, -895931769290473862098816, -265043245463665194931667968
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Crossrefs

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(8/17)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 09 2018
  • Mathematica
    Numerator[Table[HermiteH[n,4/17],{n,0,50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 29 2011 *)
    Table[17^n*HermiteH[n, 417], {n,0,30}] (* G. C. Greubel, Jul 09 2018 *)
  • PARI
    a(n)=numerator(polhermite(n,4/17)) \\ Charles R Greathouse IV, Jan 29 2016
    

Formula

From G. C. Greubel, Jul 09 2018: (Start)
a(n) = 17^n * Hermite(n, 4/17).
E.g.f.: exp(8*x-289*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(8/17)^(n-2*k)/(k!*(n-2*k)!)). (End)