cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A159538 Numerator of Hermite(n, 10/17).

Original entry on oeis.org

1, 20, -178, -26680, -224948, 57185200, 1793803720, -162442199200, -10506573835120, 541001252398400, 65475222138262240, -1817482796097507200, -452641118277021465920, 3553238308191880620800, 3472210128897376907338880, 40691398188058840163264000
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Crossrefs

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(20/17)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 02 2018
  • Mathematica
    Numerator[Table[HermiteH[n,10/17],{n,0,30}]] (* Vladimir Joseph Stephan Orlovsky, May 08 2011 *)
    Table[17^n*HermiteH[n, 10/17], {n,0,30}] (* G. C. Greubel, Jul 02 2018 *)
  • PARI
    a(n)=numerator(polhermite(n,10/17)) \\ Charles R Greathouse IV, Jan 29 2016
    

Formula

From G. C. Greubel, Jul 02 2018: (Start)
a(n) = 17^n * Hermite(n, 10/17).
E.g.f.: exp(20*x-289*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(20/17)^(n-2*k)/(k!*(n-2*k)!)). (End)

A159539 Numerator of Hermite(n, 11/17).

Original entry on oeis.org

1, 22, -94, -27500, -442004, 53855912, 2462221624, -132603427088, -12879424086640, 329810916948832, 74254604271575584, -272705805989586112, -478110301690448457536, -8626939166846096792960, 3402728145231415580480384, 144669210933209758019200768
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Crossrefs

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(22/17)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 02 2018
  • Mathematica
    Numerator[Table[HermiteH[n,11/17],{n,0,30}]] (* Vladimir Joseph Stephan Orlovsky, May 08 2011 *)
    Table[17^n*HermiteH[n, 11/17], {n,0,50}] (* G. C. Greubel, Jul 02 2018 *)
  • PARI
    a(n)=numerator(polhermite(n,11/17)) \\ Charles R Greathouse IV, Jan 29 2016
    

Formula

From G. C. Greubel, Jul 02 2018: (Start)
a(n) = 17^n * Hermite(n, 11/17).
E.g.f.: exp(22*x-289*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(22/17)^(n-2*k)/(k!*(n-2*k)!)). (End)
Showing 1-2 of 2 results.