cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A159606 G.f. satisfies: A(x) = 1 + x*d/dx log(1 + x/A(x)).

Original entry on oeis.org

1, 1, -3, 16, -115, 996, -9870, 108816, -1312227, 17116900, -239641798, 3580451040, -56837970358, 955277226736, -16948413979080, 316615678469856, -6213840704926947, 127857371413743540, -2753054722318717950
Offset: 0

Views

Author

Paul D. Hanna, May 16 2009

Keywords

Examples

			G.f.: A(x) = 1 + x - 3*x^2 + 16*x^3 - 115*x^4 + 996*x^5 -+...
1/A(x) = 1 - x + 4*x^2 - 23*x^3 + 166*x^4 - 1410*x^5 + 13602*x^6 -+...
log(1+x/A(x)) = x - 3*x^2/2 + 16*x^3/3 - 115*x^4/4 + 996*x^5/5 -+...
		

Crossrefs

Cf. variants: A159607, A159608.
Cf. A238223.

Programs

  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1+x*deriv(log(1+x*Ser(A)^-1)+x*O(x^n)));polcoeff(A,n)}

Formula

G.f. satisfies: x^2*A'(x) = 2*x*A(x) + (1-x)*A(x)^2 - A(x)^3.
a(n) ~ -(-1)^n * c * n! * n^3, where c = A238223 / exp(1) = 0.080179614624692622... - Vaclav Kotesovec, Nov 17 2017

A159608 G.f. satisfies: A(x) = 1 + x*d/dx log(1 + x*A(x)^3).

Original entry on oeis.org

1, 1, 5, 46, 597, 9791, 191876, 4348394, 111561125, 3192096511, 100729014305, 3474750994936, 130094553648612, 5254546985647116, 227771218849108212, 10548385893161367506, 519835256567911242341, 27164324421130818956039
Offset: 0

Views

Author

Paul D. Hanna, May 16 2009

Keywords

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 46*x^3 + 597*x^4 + 9791*x^5 +...
A(x)^3 = 1 + 3*x + 18*x^2 + 169*x^3 + 2157*x^4 + 34548*x^5 +...
log(1+x*A(x)^3) = x + 5*x^2/2 + 46*x^3/3 + 597*x^4/4 + 9791*x^5/5 +...
		

Crossrefs

Cf. variants: A159606, A159607.

Programs

  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1+x*deriv(log(1+x*Ser(A)^3)+x*O(x^n)));polcoeff(A,n)}

Formula

G.f. satisfies: A(x) = 1 + x*(2 - A(x))*A(x)^3 + 3*x^2*A'(x)*A(x)^2.
a(n) ~ c * 3^n * n! * n^(1/3), where c = 0.242604467523310747298... - Vaclav Kotesovec, Aug 24 2017
Showing 1-2 of 2 results.