cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A159606 G.f. satisfies: A(x) = 1 + x*d/dx log(1 + x/A(x)).

Original entry on oeis.org

1, 1, -3, 16, -115, 996, -9870, 108816, -1312227, 17116900, -239641798, 3580451040, -56837970358, 955277226736, -16948413979080, 316615678469856, -6213840704926947, 127857371413743540, -2753054722318717950
Offset: 0

Views

Author

Paul D. Hanna, May 16 2009

Keywords

Examples

			G.f.: A(x) = 1 + x - 3*x^2 + 16*x^3 - 115*x^4 + 996*x^5 -+...
1/A(x) = 1 - x + 4*x^2 - 23*x^3 + 166*x^4 - 1410*x^5 + 13602*x^6 -+...
log(1+x/A(x)) = x - 3*x^2/2 + 16*x^3/3 - 115*x^4/4 + 996*x^5/5 -+...
		

Crossrefs

Cf. variants: A159607, A159608.
Cf. A238223.

Programs

  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1+x*deriv(log(1+x*Ser(A)^-1)+x*O(x^n)));polcoeff(A,n)}

Formula

G.f. satisfies: x^2*A'(x) = 2*x*A(x) + (1-x)*A(x)^2 - A(x)^3.
a(n) ~ -(-1)^n * c * n! * n^3, where c = A238223 / exp(1) = 0.080179614624692622... - Vaclav Kotesovec, Nov 17 2017

A159607 G.f. satisfies: A(x) = 1 + x*d/dx log(1 + x*A(x)^2).

Original entry on oeis.org

1, 1, 3, 16, 123, 1221, 14724, 207908, 3355803, 60873595, 1225319163, 27097430328, 653052022740, 17036213760892, 478306368143880, 14381009543824236, 461038595072589531, 15699544671941958663, 565927686301436324649
Offset: 0

Views

Author

Paul D. Hanna, May 16 2009

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 16*x^3 + 123*x^4 + 1221*x^5 +...
A(x)^2 = 1 + 2*x + 7*x^2 + 38*x^3 + 287*x^4 + 2784*x^5 +...
log(1+x*A(x)^2) = x + 3*x^2/2 + 16*x^3/3 + 123*x^4/4 + 1221*x^5/5 +...
		

Crossrefs

Cf. variants: A159606, A159608.

Programs

  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1+x*deriv(log(1+x*Ser(A)^2)+x*O(x^n)));polcoeff(A,n)}

Formula

G.f. satisfies: A(x) = 1 + x*A(x)^2*(2 - A(x)) + 2*x^2*A'(x)*A(x).
a(n) ~ c * n! * 2^n, where c = 0.343014753433948245763329120820010283... - Vaclav Kotesovec, Feb 22 2014
Showing 1-2 of 2 results.