cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159664 The general form of the recurrences are the a(j), b(j) and n(j) solutions of the 2 equations problem: 11*n(j) + 1 = a(j)*a(j) and 13*n(j) + 1 = b(j)*b(j), with positive integer numbers.

Original entry on oeis.org

1, 23, 551, 13201, 316273, 7577351, 181540151, 4349386273, 104203730401, 2496540143351, 59812759710023, 1433009692897201, 34332419869822801, 822545067182850023, 19706749192518577751, 472139435553263016001, 11311639704085793806273, 271007213462505788334551
Offset: 1

Views

Author

Paul Weisenhorn, Apr 19 2009

Keywords

Comments

Positive values of x (or y) satisfying x^2 - 24*x*y + y^2 + 22 = 0. - Colin Barker, Feb 19 2014

Crossrefs

Cf. similar sequences listed in A238379.

Programs

  • Magma
    [n le 2 select 23^(n-1) else 24*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 21 2014
    
  • Maple
    for a from 1 by 2 to 100000 do b:=sqrt((13*a*a-2)/11): if (trunc(b)=b) then
    n:=(a*a-1)/11: La:=[La),a]:Lb:=[op(Lb),b]: Ln:=[op(Ln),n]: end if: end do:
    # Second program
    seq(simplify(ChebyshevU(n-1,12) - ChebyshevU(n-2,12)), n=1..30); # G. C. Greubel, Sep 27 2022
  • Mathematica
    CoefficientList[Series[(1-x)/(1-24x+x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 21 2014 *)
    LinearRecurrence[{24,-1}, {1,23}, 30] (* G. C. Greubel, Sep 27 2022 *)
  • PARI
    Vec(x*(1-x)/(1-24*x+x^2) + O(x^100)) \\ Colin Barker, Feb 19 2014
    
  • PARI
    a(n) = round((12+sqrt(143))^(-n)*(13+sqrt(143)-(-13+sqrt(143))*(12+sqrt(143))^(2*n))/26) \\ Colin Barker, Jul 25 2016
    
  • SageMath
    def A159664(n): return chebyshev_U(n-1,12) - chebyshev_U(n-2,12)
    [A159664(n) for n in range(1,30)] # G. C. Greubel, Sep 27 2022

Formula

The a(j) recurrence is a(1)=1, a(2)=23, a(t+2) = 24*a(t+1) - a(t) resulting in terms 1, 23, 551, 13201, ... (this sequence).
The b(j) recurrence is b(1)=1, b(2)=25, b(t+2) = 24*b(t+1) - b(t) resulting in terms 1, 25, 599, 14351, ... (A159661).
The n(j) recurrence is n(0)=n(1)=1, n(2)=48, n(t+3) = 575*(n(t+2) - n(t+1)) + n(t) resulting in terms 0, 0, 48, 27600, 15842400, ... (A159665).
G.f.: x*(1-x)/(1 - 24*x + x^2). - Colin Barker, Feb 19 2014
a(n) = (12+sqrt(143))^(-n)*(13+sqrt(143)-(-13+sqrt(143))*(12+sqrt(143))^(2*n))/26. - Colin Barker, Jul 25 2016
a(n) = A077423(n-1) - A077423(n-2). - G. C. Greubel, Sep 27 2022

Extensions

More terms from Colin Barker, Feb 19 2014