cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159742 If an array is made of columns of -nacci sequences (Fibonacci, tribonacci, etc.), all starting with 1,1,2,..., the NW-to-SE diagonals can be extended by computation. This sequence is diagonal 6. See A159741 for details.

Original entry on oeis.org

13, 44, 108, 236, 492, 1004, 2028, 4076, 8172, 16364, 32748, 65516, 131052, 262124, 524268, 1048556, 2097132, 4194284, 8388588, 16777196, 33554412, 67108844, 134217708, 268435436, 536870892, 1073741804, 2147483628, 4294967276, 8589934572, 17179869164
Offset: 1

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Apr 20 2009

Keywords

Programs

  • Magma
    [13] cat [4*(2^(n+2) - 5): n in [2..30]]; // G. C. Greubel, May 22 2018
  • Maple
    T := proc(n,m) option remember ; if n < 0 then 0; elif n <= 1 then 1; elif n = 2 then 2; else add(procname(n-i,m),i=1..m) ; fi: end: A159742 := proc(n) T(n+5,n+1) ; end: seq(A159742(n),n=1..40) ; # R. J. Mathar, Apr 22 2009
  • Mathematica
    CoefficientList[Series[(2*z^2 + 5*z + 13)/(2*z^2 - 3*z + 1), {z, 0, 100}], z] (* Vladimir Joseph Stephan Orlovsky, Jul 08 2011 *)
    Join[{13}, Table[4*(2^(n + 2) - 5), {n, 2, 50}]] (* G. C. Greubel, May 22 2018 *)
    LinearRecurrence[{3,-2},{13,44,108},30] (* Harvey P. Dale, Jul 10 2018 *)
  • PARI
    for(n=1, 30, print1(if(n==1, 13, 4*(2^(n+2) - 5)), ", ")) \\ G. C. Greubel, May 22 2018
    

Formula

From R. J. Mathar, Apr 22 2009: (Start)
a(n) = 3*a(n-1) - 2*a(n-2), n>3.
a(n) = 16*2^n - 20, n>1. (End)

Extensions

More terms from R. J. Mathar, Apr 22 2009