A159750 Positive numbers y such that y^2 is of the form x^2+(x+47)^2 with integer x.
37, 47, 65, 157, 235, 353, 905, 1363, 2053, 5273, 7943, 11965, 30733, 46295, 69737, 179125, 269827, 406457, 1044017, 1572667, 2369005, 6084977, 9166175, 13807573, 35465845, 53424383, 80476433, 206710093, 311380123, 469051025, 1204794713
Offset: 1
Examples
(-12, a(1)) = (-12, 37) is a solution: (-12)^2+(-12+47)^2 = 144+1225 = 1369 = 37^2. (A118675(1), a(2)) = (0, 47) is a solution: 0^2+(0+47)^2 = 2209 = 47^2. (A118675(3), a(4)) = (85, 157) is a solution: 85^2+(85+47)^2 = 7225+17424 = 24649 = 157^2.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..3900
- Index entries for linear recurrences with constant coefficients, signature (0,0,6,0,0,-1).
- J. Gebel, Integer points on Mordell curves [Cached copy, after the original web site tnt.math.se.tmu.ac.jp was shut down in 2017]
Crossrefs
Programs
-
Magma
I:=[37,47,65,157,235,353]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..30]]; // G. C. Greubel, May 22 2018
-
Mathematica
LinearRecurrence[{0,0,6,0,0,-1}, {37,47,65,157,235,353}, 50] (* G. C. Greubel, May 22 2018 *)
-
PARI
{forstep(n=-12, 100000000, [1, 3], if(issquare(2*n^2+94*n+2209, &k), print1(k, ",")))};
-
PARI
x='x+O('x^30); Vec((1-x)*(37+84*x+149*x^2+84*x^3+37*x^4)/(1 -6*x^3 +x^6)) \\ G. C. Greubel, May 22 2018
Formula
a(n) = 6*a(n-3) -a(n-6) for n > 6; a(1)=37, a(2)=47, a(3)=65, a(4)=157, a(5)=235, a(6)=353.
G.f.: (1-x)*(37+84*x+149*x^2+84*x^3+37*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 47*A001653(k) for k >= 1.
Comments