A159776 Numerator of Hermite(n, 17/21).
1, 34, 274, -50660, -2447444, 95515384, 14040751096, -28081874864, -87642381012080, -2781695245370336, 601127582131299616, 44972889856630550464, -4303061546712430158656, -622297158830800371505280, 28180800294357511567970176, 8642272527250878380658183424
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..390
Crossrefs
Cf. A009965 (denominators)
Programs
-
Magma
[Numerator((&+[(-1)^k*Factorial(n)*(34/21)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, May 21 2018
-
Mathematica
Numerator[Table[HermiteH[n, 17/21], {n, 0, 30}]] (* Vladimir Joseph Stephan Orlovsky, Jun 17 2011 *) Table[21^n*HermiteH[n, 17/21], {n,0,50}] (* G. C. Greubel, Jul 11 2018 *)
-
PARI
a(n)=numerator(polhermite(n, 17/21)) \\ Charles R Greathouse IV, Jan 29 2016
Formula
From G. C. Greubel, Jul 11 2018: (Start)
a(n) = 21^n * Hermite(n, 17/21).
E.g.f.: exp(34*x - 441*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(37/21)^(n-2*k)/(k!*(n-2*k)!)). (End)